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People use language to shape each other’s behavior in highly flexible ways. Effects of language are often assumed to be “high-level” in that,
whereas language clearly influences reasoning, decision making, and memory, it does not influence low-level visual processes. Here, we
test the prediction that words are able to provide top-down guidance at the very earliest stages of visual processing by acting as powerful
categorical cues. We investigated whether visual processing of images of familiar animals and artifacts was enhanced after hearing their
name (e.g., “dog”) compared with hearing an equally familiar and unambiguous nonverbal sound (e.g., a dog bark) in 14 English
monolingual speakers. Because the relationship between words and their referents is categorical, we expected words to deploy more
effective categorical templates, allowing for more rapid visual recognition. By recording EEGs, we were able to determine whether this
label advantage stemmed from changes to early visual processing or later semantic decision processes. The results showed that hearing
aword affected early visual processes and that this modulation was specific to the named category. An analysis of ERPs showed that the
P1 was larger when people were cued by labels compared with equally informative nonverbal cues—an enhancement occurring within
100 ms of image onset, which also predicted behavioral responses occurring almost 500 ms later. Hearing labels modulated the P1 such

that it distinguished between target and nontarget images, showing that words rapidly guide early visual processing.
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Introduction

People use language to shape each other’s behavior in highly
flexible ways. Effects of language are often assumed to be “high-
level” in that, whereas language clearly influences reasoning, de-
cision making, and memory, it does not influence low-level visual
processes. Here, we test the prediction that words are able to
provide top-down guidance at the very earliest stages of visual
processing by acting as powerful categorical cues.

The knowledge of what something looks like can be activated
in a variety of ways. For example, after learning that dogs bark,
hearing a bark can activate the corresponding visual knowledge as
attested by facilitated visual recognition and discrimination of
cued categories (Lupyan and Thompson-Schill, 2012; Edmiston
and Lupyan, 2013) and activation of category-specific represen-
tations in visual cortex (Vetter etal., 2014). Another way in which
visual knowledge can be activated is through words. However,
unlike other perceptual cues, words are categorical and unmoti-
vated—any utterance of the word “dog” can be used to refer to
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any dog. This renders words uniquely suited for activating mental
states corresponding to categories.

Although no one doubts the power of language to verbally
instruct to expect one thing or another and to change how one
evaluates and acts on perceptual inputs, many believe that such
verbal cuing of knowledge leaves perceptual processing itself un-
affected (Gleitman and Papafragou, 2005; Klemfuss et al., 2012;
Firestone and Scholl, 2014). Words, in this view, are “pointers” to
high-level conceptual representations (Bloom, 2000; Jackendoff,
2002; Dessalegn and Landau, 2008; Li et al., 2009). On an alter-
native account, words can affect visual processing by setting vi-
sual priors with the effect of altering how incoming information
is processed from the very start (Thierry et al., 2009; Lupyan,
2012a; Boutonnet et al., 2013; Lupyan and Ward, 2013; Francken
et al., 2015; Kok and de Lange, 2014; Kok et al., 2014).

To tease apart these alternatives, we recorded brain EEGs while
participants indicated whether a picture matched a previously pre-
sented verbal cue (e.g., “dog”) or an equally informative nonverbal
cue (e.g., dog bark). In previous studies (Lupyan and Thompson-
Schill, 2012; Edmiston and Lupyan, 2013), a highly reliable label
advantage was observed: people were faster in recognizing a picture
of a dog after hearing “dog” than after hearing a bark.

If this label advantage derives from differences in how the two
cue types activate higher-level (nonvisual) semantic representa-
tions (to which the images are matched during recognition), then
verbal and nonverbal cues may elicit later ERP differences likely
indexed by the N4—ERP component known to reflect semantic
integration (Kutas and Federmeier, 2011).
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The alternative is that the label advantage arises because labels
are especially effective at activating visual representations of fea-
tures diagnostic of the cued category, thereby providing the visual
system with a set of priors that bias the processing of incoming
stimuli (Kok et al., 2014). Processing an incoming image in light
of these priors should help to accept congruent images and reject
incongruent ones (Delorme et al., 2004). If true, we expected
differences in recognizing an image when its category was cued
verbally versus nonverbally to be reflected in changes to early
electrophysiological signals such as the P1 and/or N1 and that
these modulations may be more prominent on the left hemi-
sphere given that word recognition is strongly left lateralized and
such hemispherical differences have been reported by previous
investigations of language effects on color perception (Gilbert et
al., 2008; Mo et al., 2011).

Classically, the P1 and N1 components are known to reflect
processing of low-level visual features (e.g., contrast, color, lumi-
nance; Spehlmann, 1965; Mangun and Hillyard, 1991; Allison et
al., 1999). Although it is known that the P1 can be modulated by,
for example, attention to the visual modality (Foxe and Simpson,
2005; Karns and Knight, 2009) and that expectation of certain
visual features can modulate early visual activations (Kok and de
Lange, 2014; Kok et al., 2014), no prior work, to our knowledge,
has demonstrated category-based modulation of the P1.

Materials and Methods

Participants

We tested 14 participants, all native English speakers (9 female, 5 male)
from the School of Psychology at Bangor University, United Kingdom.
All participants were given course credits or monetary compensation for
their participation.

Stimuli

The visual stimuli comprised 50 pictures from 10 categories (5 per cate-
gory: cat, car, dog, frog, gun, cockerel, train, cow, whistle, and motorcy-
cle). Each of the 10 categories was represented by 5 different highly
recognizable color images: one normed color drawing (Rossion and
Pourtois, 2004), three photographs obtained from online image collec-
tions, and one less typical “cartoon” image (Lupyan and Thompson-
Schill, 2012). Stimuli subtended ~9° of visual angle. Labels were
recorded by a British male speaker and sounds were downloaded from
online libraries. The mean label/nonverbal sound length was 0.67 *
0.05 s. All pictures were easily nameable and all sounds were easily iden-
tifiable as determined by an extensive set of norming studies described in
Lupyan and Thompson-Schill (2012). Participants produced the correct
label in response to the sounds 89% of the time. The labels and nonverbal
sounds were equated on an “imagery concordance” task (Rossion and
Pourtois, 2004) in which people were instructed to visualize an image
depicted by a spoken label or nonverbal sound and then to rate a subse-
quently appearing picture on how well it matched the image that they
visualized.

Procedure

Participants completed 500 trials of a cued-picture recognition task. On
each trial, participants heard a word (e.g., “dog”) or a nonverbal sound
(e.g., a dog bark). After a 1 s delay, a picture appeared and participants
responded “yes” or “no” via button press to indicate whether the picture
matched the auditory cue. In 50% of the trials (congruent trials), the
picture matched the auditory cue at the category level (“dog” — dog or
[bark] —dog). In the remaining 50% (incongruent trials), the image that
followed was from one of the other nine categories. The picture remained
visible until a response was made. Participants took a short break every
100 trials. All trial parameters were fully randomized within participants.

Data collection and EEG preprocessing
The EEG was recorded from 64 Ag/AgCl electrodes placed on the partic-
ipants’ scalp according to the extended 10-20 convention (American
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Electroencephalographic Society, 1994; Klem et al., 1999) at the rate of 1
kHz in reference to electrode Cz. Data were filtered offline with a high-
pass 0.1 Hz filter and a low-pass 30 Hz filter and re-referenced to the
common average of all scalp electrodes. Epochs ranging from —100 to
1000 ms relative to the onset of the target pictures were extracted from
the continuous recording. Epochs with activity exceeding £75 uV at any
electrode site were automatically discarded. Independent components
responsible for vertical and horizontal eye artifacts were identified from
an independent component analysis (using the runica algorithm imple-
mented in EEGLAB) and subsequently removed. Baseline correction was
applied in relation to the 100 ms of prestimulus activity. After these steps,
all remaining epochs were averaged by condition and for each partici-
pant. All signal-processing steps were performed in the MATLAB version
2013a (The MathWorks) environment using a combination of inhouse
scripts and routines implemented in EEGLAB version 13.1.1 and ER-
PLAB version 4.0.2.3.

Analyses

Hypothesis testing. Statistical hypothesis testing on all but one of our
analyses (described separately) was performed in the R environment
(version 3.1.1). Linear mixed-effects modeling was performed using the
Ime4, R package (version 1.1-7; Bates et al., 2014) and p-values from
those models were obtained using the Satterthwaite approximation im-
plemented in the ImerTest, R package (Kuznetsova et al., 2014).

Behavioral data. We used linear mixed-effects models to predict
reaction times (RTs, the time elapsed between target picture onset
and participants’ response) from the interaction between cue type
and congruence with random slopes for cue type and congruence by
participant.

ERP analyses. Four ERP components were identified from grand-
averaged data. The P1, N1, and P2 were maximal at parietal sites in the
70-125,130-180, and 190—230 ms range, respectively. The N4 was max-
imal over central cites and measured in the 300-500 ms time window.
Mean ERP amplitudes were measured in regions of interest (ROIs)
around the sites of maximal amplitude (PO3, PO4, PO7, POS8, PO9,
PO10, O1, 02, for the P1, N1, and P2; FCI, FC2, FCz, C1, C2, Cz, CP1,
CP2, CPz for the N4). We did not conduct a full-scalp analysis because
the modulations of the ERP components were predicted to occur in the
ROIs and statistical analyses were conducted on a priori determined
electrodes. For the P1, N1, and P2 analyses, mean ERP amplitudes sam-
pled in the windows and from electrodes corresponding to the two
parieto-occipital ROIs listed above were subjected to a linear mixed-
effects model, where mean amplitudes were predicted by the interaction
between cue type, congruence, and laterality (left/right parieto-occipital
ROI), with random slopes for cue type, congruence, and laterality by
participant. To analyze the N4, the same model was run on the ampli-
tudes collected from the electrodes corresponding to the centroparietal
ROl listed above. There was no laterality factor in this model because the
N4 was sampled over a single ROI. Trials on which participants made
errors were discarded from all analyses involving electrophysiological
data.

Single-trial analyses. Aggregating data often masks trial-to-trial vari-
ance in peak amplitudes and especially in peak latencies (Rousselet and
Pernet, 2011), rendering attempts to correlate physiological measures
with behavioral responses woefully underpowered. Mixed-effect models
allow us to analyze the data at a single-trial level and to correlate the
amplitude and latency of the earlier more reliably time-locked response
(P1) on each trial with the participants’ behavior (RTs).

Most single-trial analyses implement component analyses (Gerson et
al., 2005; Philiastides and Sajda, 2006; Saville et al., 2011) to alleviate
limitations imposed by a low signal-to-noise ratio, but this was not
needed here because the P1 was highly reliable and the number of trials
(~125 per condition) was more than sufficient for our statistical models.
Our only step to improve the signal-to-noise ratio consisted of creating a
single virtual “optimized” electrode from linear derivations of the elec-
trodes in the two parieto-occipital ROIs mentioned above. The opti-
mized signal from the 65-130 ms poststimulus onset was submitted to a
peak-finding algorithm (based on the findpeaks MATLAB function)
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along a series of five 13 ms sliding windows, which returned a peak
location (in milliseconds) and its amplitude (in millivolts) for each trial.

Predicting cue—picture congruence from P1 single-trial activity

To determine whether properties of the P1 distinguished between trials
in which the cue matched the target and those in which it did not, we used
a generalized linear mixed-effects model to predict whether a given trial
was congruent (i.e., the cue matched or mismatched the target image ata
category level) from the interaction of single-trial peak latency, ampli-
tude, and cue type with random slopes for cue type by participant and by
item category.

Predicting behavior from P1 single-trial activity

To relate the electrophysiological data to the responses that our subjects
made, we predicted single-trial RTs from single-trial P1 peak latencies
and amplitudes using linear mixed-effects models (with cue type and
congruence as covariates) and random slopes of the main effects of cue
type and congruence by participant and by item category.

Results

Behavioral results

Label cues led to faster recognition of target image RTs than
nonverbal sound cues (Fig. 1), as indicated by a highly reliable
main effect of cue type (b = —10.4, t = —5.4, p << 0.0001).
Congruent trials led to faster RTs compared with incongruent
trials—a commonly found “yes” response advantage (b = —30,
t= —15.5, p << 0.0001). The label advantage was also reflected in
accuracy (Mlabel = 97%, Msound = 95%, b = 0.01, = 4.5,p <<
0.0001). Cue type and congruence did not interact reliably in the
analyses of RT and accuracies (¢ < 0.1).

Electrophysiological results

Effects of cues on peak amplitudes

Pictures that were cued by labels elicited more positive P1 peak
amplitudes than when the same pictures were cued by nonverbal
sounds (MD = 0.45 wV; b= 0.3, = 2.37, p = 0.02). The effect of
cue type was numerically larger over the left hemisphere (MD, ppr
= 0.57 uV, MDygur = 0.32 V) electrodes, but the side-by-cue
type interaction was not reliable (b = 0.2, t = 0.9, p = 0.34; Fig.
2A). Congruence did not affect P1 amplitudes and did not inter-
act with cue type (r < 0.1).

Pictures cued by labels also elicited more positive P2s com-
pared with pictures cued by nonverbal sounds (MD = 0.62 uV;
b =0.31, t = 2.75, p = 0.006). The P2 was also modulated by
cue—picture congruence, showing larger amplitudes on incon-
gruent than congruent trials (MD = 1.04 uV; b = —0.5, t =
—4.59, p <<<..0001; Fig. 2 A, B). There was no interaction between
cue type and congruence (t < 0.1). Neither the cue type nor the
congruence manipulations or any interactions between those fac-
tors affected the N1 (Fig. 2A, B).

As in past work showing that unexpected semantic infor-
mation elicits a larger N4, incongruent trials (e.g., hearing
“dog” and seeing a motorcycle) considerably increased N4s
compared with congruent trials (MD = —1.7 uV; b = —0.82,
t = —6.48, p << 0.0001). Importantly, the N4 was not modu-
lated by cue type (b = 0.1, t = —1.1, p = 0.27). There was also
no reliable cue type by congruence interaction (t < 1; Fig.
2C,D; see below for discussion).

Relationship of the P1 to behavior

If the cues modulate directly perceptual processes brought to bear
in recognizing the pictures, we expected to see a relationship
between the latency or amplitude of the P1 and the behavioral
response. Indeed, over and above the effects of cue type and con-
gruence, behavioral RTs were reliably predicted by the electro-
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Figure 1. Mean RTs (correct responses only) showing effects of cue type and congruence.
Error bars indicate 95% confidence intervals.

physiological measures. Specifically, earlier peak latencies of the
P1 led to faster RTs (b = 0.23, t = 2.38, p = 0.02; Fig. 3A). A
relationship between the P1 and RTs was also found in the am-
plitude domain. Larger peak amplitudes predicted faster RTs
(b= —0.56,t = —2.53, p = 0.01; Fig. 3B). Behavioral RTs were
predicted independently by peak latencies and amplitudes, which
were correlated at r = —0.08 (nonsignificant).

Selective modulation of the P1 by labels

If labels are especially effective at activating category-diagnostic
visual features, as we have hypothesized, then it may be possible
to distinguish targets (containing such features) from nontargets
(lacking these features) based on the properties of the P1, specif-
ically on the label trials. We therefore investigated whether the
modulation of the P1 by verbal labels was limited to gross-level
amplitude differences (i.e., labels leading to larger/earlier P1s) or
if these changes yielded selective modulation of processing, help-
ing to distinguish matching from nonmatching images.

An analysis predicting the category-level congruence (match/
mismatch) between the cue and the picture from the latency and
amplitude of the P1 revealed a reliable interaction between cue
type and P1 latency (b = —0.42,t = —3.79, p = 0.0002). Post hoc
analyses showed that congruence was reliably predicted in label-
cued trials (b = —0.59, = —3.8, p = 0.0002). In contrast, the P1
did not differ between congruent and incongruent trials when
people were cued by nonverbal sounds (b = 0.24, t = 1.6, p =
0.12; Fig. 4). Label cues reliably sped up the P1 relative to sound
cues on congruent trials (MD = 1 ms; b = —0.44.t = —2.27,p =
0.023).

Congruence was also predicted reliably by a significant inter-
action between cue type and single-trial peak amplitudes (b =
0.56, t = 2.23, p = 0.03) whereby more positive amplitudes pre-
dicted matching trials, but the post hoc main effects were not
individually reliable.

The analyses above show that labels modulate the P1 within
100 ms of the appearance of the target picture, allowing for dis-
crimination between congruent and incongruent trials earlier
than when people are cued nonverbally. The absence of any
effects of the cue on the N4 suggests that both cue types were
equally well matched to the pictures at the level of semantic
congruence.

Effects of cue length and pretarget differences
Unlike previous research (Lupyan and Thompson-Schill, 2012;
Edmiston and Lupyan, 2013), the length of the verbal and non-
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the difference between mismatching and matching trials cued by a nonverbal sound.

verbal cues was not fully equated in the
present study. These small differences
meant that the delay between cue and pic-
ture onset was slightly longer for some
cues compared with others. To rule out
the possibility that the effects reported
above are due to differences in cue length,
we recomputed the analyses above par-
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analyzed the EEG signal before the target picture for each cue
type. Epochs corresponding to 1 s of activity preceding target
onset were averaged for each cue type. Differences between cue
types were assessed using a paired, two-tailed permutation test
based on the t-max statistic (Blair and Karniski, 1993) with a
familywise a level of 0.05 at all time points of the 1 s pretarget
onset activity and from all electrodes corresponding to the 3 ROIs
used in the ERP analyses. This statistical analysis was performed

Figure 3.
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P1 peak latencies (4) and peak amplitudes (B) were predictive of RTs. Lines depict best linear fits. Error bars indicate
=1 SE of the intercept and slope. Dashed red lines show =1 SE of the slope.

in the Mass Univariate MATLAB toolbox (Groppe et al., 2011).
The analysis of the pretarget activity failed to detect any signifi-
cant differences at any time points between the activity generated
by labels and sounds in the —1000 to 0 ms time window.

Discussion

At its most basic, language allows people to “verbally point” to
something. When asked to “look at the car,” we expect people to
do just that. This type of linguistic control of behavior is often
assumed to happen at a relatively “high” semantic level (Jackend-
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indicate 95% confidence intervals. Vertical bars indicate significant differences.

off, 2002; Li et al., 2009). Effects of language on cognition are thus
viewed as deriving from changes to such higher-level processes,
like working memory or decision making, which are typically
thought to happen after visual processing is completed (Pylyshyn,
1999; Klemfuss et al., 2012). In this “labels-as-pointers” view, the
idea that people recognize images more quickly and accurately when
they are cued by words than by equally familiar and unambiguous
sounds (Lupyan and Thompson-Schill, 2012; Edmiston and
Lupyan, 2013) is understood in terms of labels being more effective
atactivating high-level, and putatively amodal, semantic representa-
tions than are sounds.

On an alternative account, this label advantage has a percep-
tual locus: verbal and nonverbal cues provide different top-down
signals to the visual system, changing how subsequently incom-
ing (bottom-up) information is processed (Delorme et al., 2004;
Kok et al., 2012a, 2014).

To tease apart these two alternatives, we used EEG to measure
real-time brain activity to determine the precise timing of the
effects underlying the label advantage. We expected that, if the
advantage had a semantic locus, then differences in brain activity
elicited by label-cued versus sound-cued pictures would occur
late in time and be reflected by ERP components commonly as-
sociated with semantic integration—namely the N4 (Kutas and
Federmeier, 2011). If instead labels potentiate visual processes,
then we expected to see modulations of early electrophysiological
signals classically associated with bottom-up processes (Spehl-
mann, 1965; Mangun and Hillyard, 1991; Allison et al., 1999).

Our results unambiguously support the hypothesis that the
label advantage has a perceptual locus. Labels led to more positive
and earlier P1s (the generators of which are linked to extrastriate
cortex; Di Russo et al., 2003). Importantly, the peak latency of the
P1 was sensitive to the congruence between the cue and the target,
but only when people were cued by a word. This suggests that,
after hearing a word, the neural processes responsible for gener-
ating the P1 were already sensitive to the object’s category. Our
analysis of the pretarget activity suggests that the observed differ-
ences do not arise before target presentation, confirming that the
effects observed on the P1 are due to genuine cue—picture visual
integration. Moreover, we found a strong correlation between P1
activities and behavior (earlier Pls predicted shorter correct
RTs), indicating that the processes generating the P1 were not
incidental to the behavioral response.

Furthermore, whereas incongruent cues led to greater N4s
compared with congruent ones (a classic N4 semantic incongru-
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ity effect; Kutas and Hillyard, 1984; Kutas and Federmeier, 2011),
these effects were equivalent for verbal and nonverbal cues, sup-
porting our contention that the two cue types were equivalently
informative/unambiguous at a semantic level in the context of
this task. Both the cue type and congruence effects were also
reflected on the P2, an ERP component known to index matching
processes between sensory inputs and memory (Luck and Hilly-
ard, 1994; Freunberger et al., 2007). Together, these results sug-
gest a perceptual locus for the label advantage.

The present findings apply directly to the larger question of
the relationship of language, cognition, and perception. In the
view advocated here, words do not simply point to preexisting
semantic categories, but help to reify the categories that they
denote (James, 1890; Lupyan et al., 2007; Lupyan, 2012b). In this
view, comprehending a word such as “dog” activates visual prop-
erties diagnostic of dogs (Simmons et al., 2007; Evans, 2009;
Kuipers et al., 2013; Pulvermiiller, 2013). Subsequently presented
visual inputs are processed in light of these activated representa-
tions (i.e., words act as high-level priors on the visual system;
Lupyan and Clark, 2015). The functional consequence is that
hearing a word allows for more effective representational separa-
tion of category members and nonmembers. Hearing “dog” ef-
fectively turns one into a better “dog-detector.” The same
mechanism can explain why hearing an informationally redun-
dant word improves visual search (Lupyan, 2008), how words can
unsuppress visual representations masked through continuous
flash suppression (Lupyan and Ward, 2013), why labels make
differences between objects more or less salient to the visual sys-
tem (Boutonnet et al., 2013), and why processing motion-related
words such as “float” or “dive” affects discrimination of visual
motion (Meteyard et al., 2007; Francken et al., 2015). The same
mechanism may also underlie the kind of warping of cortical
representations after verbal instructions reported by Cukur et al.
(2013).

In addition to informing the mechanisms by which words can
influence visual processing, our work shows that cues can affect
the P1 in a semantically coherent way on a trial-by-trial basis.
Although prior work has shown that the P1 is modulated by cues
that signal the task-relevant modality (e.g., visual vs auditory;
Foxe and Simpson, 2005; Foxe et al., 2005; Karns and Knight,
2009) and that the P1 is altered by learning the name or the
function of the depicted object (Rahman and Sommer, 2008;
Maier etal., 2014), our findings are, to our knowledge, the first to
show that the P1 can be selectively modulated online by category-
specific cues and that the P1 predicts overt visual recognition
responses occurring 500 ms later.

What is special about labels?

What makes labels more effective than nonverbal sounds at cuing
visual knowledge? As discussed by Lupyan and Thompson-Schill
(2012), the label advantage cannot simply be explained by differ-
ences in cue familiarity because it persists at longer cue-to-target
delays, leaving enough time for the potentially unfamiliar cue to
be processed. In fact, even newly learned, and thus completely
unfamiliar, labels (“alien musical instruments”) still have an ad-
vantage over nonverbal associates (i.e., the sound of these instru-
ments, experiment 4 in Lupyan and Thompson-Schill, 2012),
suggesting that those new labels inherit the categorical properties
of familiar ones. The label advantage remains even when the
congruence between sounds and pictures is maximized (e.g., an
electric guitar sound cuing an electric guitar vs “guitar” cuing an
electric guitar; P. Edmiston and G. Lupyan, unpublished data).
That both cue types yield virtually identical N4s further suggests
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that the label advantage is not simply to labels being more famil-
iar or strongly associated with the target images. Rather, the dif-
ference between the two cue types stems from the relationship
between words and referents (Edmiston and Lupyan, 2013;
Lupyan and Bergen, 2015). Words denote categories. The word
“dog” denotes all dogs, abstracting over the idiosyncrasies of par-
ticular exemplars. In contrast, nonverbal cues, no matter how
unambiguous and familiar, are necessarily linked to a particular
dog (e.g., a high-pitched bark is produced by a smaller dog),
making them less categorical.

Therefore, although it is possible to convey information about
specific exemplars both through verbal and nonverbal means,
language may be uniquely well suited for activating categorical
states, which in this case enable people to distinguish more effec-
tively between category members and nonmembers.

Role of mental imagery

Hearing cues—whether verbal or nonverbal—triggers rapid and
largely automatic activations of visual representations (a type of
implicit mental imagery). The neural machinery underlying such
activations is likely to be substantially shared with perception,
visual working memory, and, indeed, explicit mental imagery
(Pearson et al., 2008; Pratte and Tong, 2014). However, we think
that the hundreds of trials and the rapid pacing of the task make
it unlikely that participants are engaging in the sort of strategic
and explicit imagery explored by, for example, Kosslyn et al.
(2006) and Farah (1989).

Interpreting the P1 enhancement within a predictive
processing framework

The finding that hearing a label enhanced the P1, modulating it
differentially for targets and nontargets, is well accommodated by
predictive processing frameworks (Kok et al., 2012a; Clark,
2013). The auditory cue that people hear ahead of the picture
activates visual predictions. For example, the label “dog” or the
barking sound may activate visual representations corresponding
to a dog shape. The picture (target) that subsequently appears is
processed in light of these predictions. Insofar as the predictions
are accurate, they will help to recognize an image from the cued
category or reject an image from a nonmatching category. More
specifically, the cues may increase the weighting of incoming sen-
sory evidence consistent with the predictions (Kok et al., 2012b).
As detailed above, what distinguishes the two cue types is that
labels are uniquely suitable for generating categorical predictions.

Conclusions

People are faster to recognize an image at a categorical level after
hearing a label (e.g., “dog”) than after hearing a nonverbal cue
(e.g., dog bark). We provide evidence that this label advantage
stems from labels setting category-level priors that alter how a
subsequent image is visually processed. Labels appear to activate
category-specific visual features altering visual processing within
100 ms of stimulus onset. These early modulations were strongly
predictive of behavioral performance occurring almost half a sec-
ond later showing that the P1 is sensitive to semantic informa-
tion. The ability of words to act as categorical cues that rapidly set
perceptual priors has consequences for understanding aspects of
human cognition thought to depend on categorical representa-
tions such as inference, compositionality, rule following, and for-
mal reasoning.
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