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According to predictive coding models of perception, what we see is determined jointly by the current input and
the priors established by previous experience, expectations, and other contextual factors. The same input can
thus be perceived differently depending on the priors that are brought to bear during viewing. Here, I show
that expected (diagnostic) colors are perceived more vividly than arbitrary or unexpected colors, particularly
when color input is unreliable. Participantswere tested on a version of the ‘Spanish Castle Illusion’ inwhich view-
ing a hue-inverted image renders a subsequently shown achromatic version of the image in vivid color. Adapting
to objects with intrinsic colors (e.g., a pumpkin) led to stronger afterimages than adapting to arbitrarily colored
objects (e.g., a pumpkin-colored car). Considerably stronger afterimages were also produced by scenes contain-
ing intrinsically colored elements (grass, sky) compared to scenes with arbitrarily colored objects (books). The
differences between images with diagnostic and arbitrary colors disappeared when the association between
the image and color priorswasweakened by, e.g., presenting the image upside-down, consistentwith the predic-
tion that color appearance is being modulated by color knowledge. Visual inputs that conflict with prior knowl-
edge appear to be phenomenologically discounted, but this discounting is moderated by input certainty, as
shown by the final studywhich uses conventional images rather than afterimages. As input certainty is increased,
unexpected colors can become easier to detect than expected ones, a result consistent with predictive-coding
models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Some have argued that perception can be understood as an essen-
tially encapsulated process (Firestone & Scholl, 2014; Pylyshyn, 1999;
Raftopoulos, 2005; Riesenhuber & Poggio, 1999). On this view, although
how we interpret and what we do with visual representations is sensi-
tive to task goals, prior knowledge, and expectations, the process by
which those representations are generated is not penetrated by cogni-
tive states. So, although our knowledge of the color of ripe Cavendish
bananas is clearly important for successfully buying ripe bananas, on
the encapsulated view, our actual perception of the color of a banana
is not influenced by such knowledge.

A growing number of findings have steadily chipped away at the the-
sis of vision as an encapsulated process, supporting the alternative that
all perceptual processing can in principle bemodulated bywhat the view-
er knows and expects. Findings from both psychophysics and neuroim-
aging show that perceptual processes can be influenced by knowledge
and expectations. For example: knowledge of surface hardness affects
amodal completion (Vrins, de Wit, & van Lier, 2009), knowledge of

bodies affects perceiving depth from binocular disparity (Bulthoff,
Bulthoff, & Sinha, 1998), expectations of motion affects motion percep-
tion (Sterzer, Frith, & Petrovic, 2008), knowledge of real-world size af-
fects perceived speed of motion (Martín, Chambeaud, & Barraza, 2015).
Meaningfulness—a putatively late stage in visual processing—affects the
putatively earlier processes of shape discrimination (Abdel Rahman &
Sommer, 2008; Lupyan & Spivey, 2008) and recovery of 3D volumes
from two-dimensional images (Moore & Cavanagh, 1998). Putatively
high-level cognitive processes like language have been argued to affect
the processing of motion (Dils & Boroditsky, 2010; Meteyard, Bahrami,
& Vigliocco, 2007) and hearing an object's name affects people's visual
sensitivity in simply detecting the presence of that object (Lupyan &
Spivey, 2010a; Lupyan & Ward, 2013). Despite some stubborn protests
(Firestone & Scholl, 2015), evidence is accumulating that no part of the
perceptual process is immune from such top-down influences (Lupyan,
2015).

The idea that what we know changes what we see is far from new,
entering mainstream psychology in the 1950s (Bruner, 1957). Some
early studies of cognitive penetrability of perception suffered from
methodological confounds such as failing to adequately distinguish be-
tween perceptual effects and participants conforming to experimenter
demands and failing to use bias-free performance measures
(Goldiamond, 1958; but see Erdelyi, 1974 for a detailed evaluation of
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the critiques of the so-called “New Look” movement). Theoretical con-
fusion also characterized some more contemporary reports where re-
searchers interpreted apparent influences of knowledge on perception
as indicating that people “See what [they] want to see” (Balcetis &
Dunning, 2006), an idea at odds with what many take to be the basic
function of perception—to inform us of what we don't know rather
than to simply reassure us that theworld is aswe know it (Fodor, 1984).

Of coursewedonot simply seewhatwewant orwhatwe expect. One
promising framework for understanding how and to what extent what
we perceive is influenced by our knowledge, expectations (and cognitive
states more generally) is predictive-coding (e.g., Friston, 2010; Rao &
Ballard, 1999; see Clark, 2013; Hohwy, 2013 for reviews). This frame-
work posits that perceptual processing (indeed all neural processing) is
best understood in terms of reduction of prediction error through a pro-
cess of active inference within a hierarchical system. Each layer in the hi-
erarchy generates predictions (i.e., sets the priors) for the layer below it
and incoming sensory input is weighed against these predictions. The er-
rors propagate forward, “informing” the next cycle of predictions. This
process runs concurrently and continuously across multiple levels of a
processing hierarchy. Errors from an imprecise input can be reduced
by discounting the input. Errors from a more precise input—even if
such an input corresponds to a highly unlikely and unexpected
state—can be reduced by altering the higher-level prediction itself.

Predictive coding is a particular implementation of a more general
idea that processing an input should be conditioned on priors (Geisler
& Kersten, 2002; Gilbert & Sigman, 2007; Kersten, Mamassian, & Yuille,
2004; Lamme & Roelfsema, 2000; Purves, Wojtach, & Lotto, 2011). The
up-side of having a perceptual system operating in this way is that any
knowledge that may be relevant for disambiguating an ambiguous or
otherwise under-determined input, is brought to bear on the processing
of the current input, making the system far smarter (Barlow, 1997;
Gregory, 1997), more robust (Jones, Sinha, Vetter, & Poggio, 1997), and
faster (Delorme, Rousselet, Mace, & Fabre-Thorpe, 2004) than one that
works in a purely bottom-upway (as Bullier, 1999wrote, “Visual percep-
tion is too fast to be impenetrable to cognition”).

1.1. Examining the effects of color knowledge on color appearance

Most studies examining effects of cognition on perception have
focused on task performance, sidestepping the question of perceptual
phenomenology. Phenomenology is notoriously difficult tomeasure be-
cause it is subjective and, as psychology's foray into introspection has
taught us, relying on subjective reports is problematic. While perfor-
mance on even the simplest of visual tasks can be affected by what the
subject knows and expects, such demonstrations leave open the ques-
tion of whether and how cognitive states affect phenomenology: what
objects look like.

The present work examines whether color appearance is altered by
color knowledge. Many objects we see have characteristic colors: sky,
grass, bananas. Many others, largely artifacts, come in a variety of colors:
cars, books, furniture. Knowing that something is a banana helps to con-
strain its color in a fairly precise way. Knowing that something is a car,
does not. Does such knowledge affect color appearance? One of the
first empirical studies of effect of knowledge on color appearance was
by Delk and Fillenbaum (1965) who had participants adjust the color
of the background to match the color of cutouts of forms associated
with redness (e.g., heart, lips). The authors observed that the background
wasmade redderwhen itwasmatched to forms associatedwith redness,
compared to when it was matched to neutral forms (e.g., a circle). A
problem with this procedure is that it may reflect a kind of ideomotor
process such that thinking “red” causes people to make things redder
without a corresponding change in appearance. In a more recent study,
Goldstone (1995) trained people to associate shapes with particular
colors and showed that subsequent adjustments of the shapes were in-
formed by its associated color, but this procedure may be subject to the
same concern (see also Firestone & Scholl, 2014). Amuchmore stringent

procedure developed by Hansen, Olkkonen, Walter, and Gegenfurtner
(2006) required people to adjust the colors of diagnostically colored ob-
jects (e.g., banana) to a subjective grayscale. The authors predicted that a
grayscale banana would appear slightly yellowish and would thus re-
quire the participant to make is slightly blue to offset the yellow. This
was the result obtained, and the general effect of “memory colors” has
now been replicated several times (Kimura et al., 2013; Lewis, Pearson,
& Khuu, 2013; Olkkonen, Hansen, & Gegenfurtner, 2008; Witzel,
Valkova, Hansen, & Gegenfurtner, 2011).1 An fMRI study by Bannert
and Bartels (2013) confirmed that visual representations of grayscale im-
ages of objects with diagnostic colors “contain” color information as evi-
denced by the ability of a classifier trained on color percepts to decode
colors of grayscale objects.

1.2. The current studies: rationale and predictions

Here, I examine effects of knowledge on color appearance by taking
advantage of an afterimage phenomenon discovered by Daw (1962)
and popularized by John Sadowski as the “Spanish Castle Illusion”. In
this illusion, observers view a picture of a castle scene having inverted
hue anddampened luminance. The same scene is thenpresented in gray-
scale with restored luminance. This objectively grayscale image appears
to people in vivid natural color. On being informed of the illusion, ob-
servers are typically shocked to discover that what they saw as a full-
color image has no color content whatsoever (Sadowski, 2006).2

Towhat extent is our knowledge of characteristic colors—that grass is
normally green, that sky is blue, that pumpkins are orange—contributing
to the vividness of this illusion? It may seem implausible that afterim-
ages should be subject to such top-down effects. After all, there is now
good evidence that color afterimages are rebound signals from retinal
ganglion cells (Zaidi, Ennis, Cao, & Lee, 2012) and (mammalian) retinas
are thought not to be under top-down control. But these retinal rebound
signals comprise inputs to the same cortical processes as conventional
percepts and should therefore be subject to the same types of top-
down effects as conventional perceptual inputs (e.g., Shimojo,
Kamitani, & Nishida, 2001; Van Lier, Vergeer, & Anstis, 2009).

The predictive coding framework briefly outlined above allows us to
make three predictions about the contribution of knowledge on color
appearance. First, afterimages of objects or scenes containing intrinsic
(diagnostic) color information should yield stronger afterimages than
objects/scenes with arbitrarily colored objects because the perception
of the intrinsically colored objects/scenes is being aided by prior expec-
tations: the blue of the sky, the orange of the pumpkin, etc. (Fig. 1). Sec-
ond, afterimages of objects/scenes with intrinsic colors that contradict
the priors should be weakened. These two hypotheses are tested in Ex-
periments 1 and 2. In Experiment 1A, I compared the strength of after-
images resulting from adapting people on intrinsically and arbitrarily
colored objects. Experiment 2A tests the same prediction by comparing
two scenes—a castle scene containing regions with characteristic colors
(sky, grass), and an image of a bookcase containing vivid, but arbitrarily
colored books. Experiments 1B and 2B–F test the hypothesis that violat-
ing the top-down color prediction ought toweaken or eliminate the dif-
ference between intrinsically and arbitrarily colored objects.
Experiment 1B tested the prediction that following adaptation that

1 There is some confusion about these results. The effect of memory colors does not
arise from simply thinking that the object before you is a banana (and therefore typically
yellow). The objectmust look like a banana, and themore it looks like a banana, the stron-
ger the effect (Olkkonen et al., 2008). Deroy (2013) argued that such findings mean that
demonstrations of memory colors does not constitute penetration of color processing by
cognition because mere activation of a ‘banana’ concept (assumed by philosophers like
Deroy to be amodal) should be sufficient formemory colors to become visible. The depen-
dence between the richness of the input and the strength o the memory color falls out of
any Bayesian (or interactive-activation)model of this process. A simple outlineof a banana
is less likely to be yellow than a photograph of a banana, which in turn is less likely to be
yellow than an actual 3-dimensional banana. Simply stated: not all bananas yield equally
strong color predictions.

2 The illusion can be seen at http://www.johnsadowski.com/big_spanish_castle.php.
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e.g., causes one to see a grayscale pumpkin as blue may cause a partial
discounting of its color such that it is now appears equally or less vivid
as a blue car (which had no strong color priors to be violated). This pre-
diction is tested more rigorously with whole scene images in Experi-
ment 2B–F. Experiment 2B–C test the hypothesis that seeing an
afterimage of a scene that violates color priors (e.g., a yellow sky, purple
grass) will lead to partial discounting of the colors, producing a weaker
afterimage. Experiment 2D–E test the hypothesis that similar
discounting occurs when viewing an intrinsically-colored scene with
the correct colors, but in incorrect places, e.g., a blue sky in the lower
rather than the expected upper visual field (see the rightmost part of
Fig. 1-right). Finally, Experiment 2F extends the basic result to new
stimuli.

The third hypothesis, investigated in Experiment 3, is that the influ-
ence of the priors on the percept should be a function of input precision
(sometimes called “certainty”). Because afterimage are unstable, fading
over time, afterimage inputs may be associated with a much larger un-
certainty (lower precision) compared to conventional percepts, and
compared to conventional percepts may be more strongly modulated
by prior knowledge. To examine the effects of input certainty, in Exper-
iment 3 I investigated how color knowledge affects appearance of more
conventional perceptual inputs. On a predictive coding account, a low
precision input that contradicts the priors may be partially overridden,
but a high precision input that violates predictions may become more
visible. Experiment 3 helps to answer the question of why we have no
trouble seeing things that conflict with our expectations.

2. Experiments 1–2

Experiments 1 and 2 use an interactive nulling technique tomeasure
the appearance of afterimages as a function of color knowledge. Afterim-
ages of objects and scenes with intrinsic colors (orange pumpkin, blue
sky) were predicted to appear more vividly than images lacking typical
colors or the same objects appearing in unexpected colors or orienta-
tions (Fig. 1). Contributing to the novelty of the current approach is a
method for assessing the vividness of afterimages that does not rely on
color memory or the need to match a reference image to the vanishing
afterimage (White & Montgomery, 1976). Instead, afterimage strength
is measured using an interactive nulling procedure that involved

participants adjusting a grayscale image along a line of chromatic adjust-
ment until the image looked subjectively achromatic (Fig. 2).

2.1. Participants, materials and methods

2.1.1. Participants
A total of 253 participants were recruited (Table 1). All participants

were undergraduates at UW Madison and received course credit for
participating. Of these, 25 (9.9%) were excluded. Final participant
counts for each study and reasons for exclusions are listed in Table 1.

2.1.2. Materials
The stimuli for Experiment 1 were three color-matched object

pairs such that one image of each pair had an intrinsic color while
the other was arbitrarily colored (green: broccoli/armchair, yellow:
banana/t-shirt, orange: pumpkin/car). The arbitrarily-colored im-
ages were color matched such that the armchair was not just green,
but broccoli-green, by mapping the color histogram from the intrin-
sic image to the arbitrary image using the color-match feature in
Photoshop. The stimuli for Experiments 2–3were a picture of a castle
scene with intrinsic colors and a picture of a bookcase with arbitrari-
ly colored books (see Fig. 2 for examples). The stimuli for Experiment
1 subtended approximately 7.5 − 14° (h) × 14° (w) of visual angle.
The stimuli in Experiment 2 were larger, subtending approximately
19° (h) × 28° (w) of visual angle. All materials can be downloaded
at sapir.psych.wisc.edu/stimuli/afterimageStims.zip.

2.1.3. Methods Experiments 1–2

2.1.3.1. Creation of the afterimage inducer. The afterimage inducer for
each image was based on the method described by John Sadowski in
the original Spanish Castle illusion (Sadowski, 2006).

Starting with a photograph, its luminance profile (i.e., non-chroma
information) was replaced by a 60% white fill in HSB (Hue, Saturation,
Brightness) space (HSB: 0, 0, .6), the image was hue inverted (rotated
180° in HSB space), and the saturation boosted by 18%. The resulting
image was thus a slightly darker and more saturated color inverse of
the original. A Photoshop action for performing this procedure can be
downloaded at http://sapir.psych.wisc.edu/stimuli/makeAfterimage.

Fig. 1.A. Schematic outline of predictions for Experiment 1A. Viewing the achromatic stimulus after viewing a colored inducer yields two sources of bottom-up input: the exogenous ach-
romatic input and the rebound color signal (afterimage). The phenomenology of this input should bemodulated bywhether it is supported by prior color knowledge (left) as compared to
an identical chromatic input lacking such priors (right). B. Experiment 2 tests a similar prediction with scene images, adding a prediction that a conventionally colored castle will yield a
stronger afterimage than an upside-down castle because the former elicits stronger priors than the latter. Table 1 lists all the tested stimulus combinations. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.)
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zip. The achromatic version of the imagewas created by isolating the lu-
minance channel in Lab space.

2.1.3.2. Creation of the unexpected-color and inverted-color inducers. The
conventional color inducer yielded a perception of a conventionally
colored scene (green grass, blue sky). In contrast, what I will refer
to as the color-inverted inducer yielded a perception of a color-
inverted scene (purple grass, orange sky). This was achieved by ro-
tating the hue of the original image 180° before following the steps
listed above. The color-inverted inducer was used in Experiment
2C, and E. The unexpected color inducer, used in Experiments 1B
and 2F was created in a similar way, but instead of inverting the
hue, the colors were switched between images: the chair/broccoli
images were now yellow; the pumpkin/car, green; the banana/
shirt, orange. In Experiment 2F, the unexpected color image was cre-
ated by exchanging the greens and blues, creating an image with a
green sky and blue grass.

2.1.3.3. Testing facilities. Participants were tested in 4 rooms simulta-
neously with identical 21″ LCD monitors (Viewsonic VX2268WM,
1650 × 1050 @ 120 Hz). The gamma was set to 2.2 and linearized
and the monitors were calibrated using X-rite i1 Display 2 calibrator.
The ambient illumination was measured at 17 cd/m2. As further
discussed in Section 5.1, the use of this consumer-grade rather than
professional equipment does not challenge the conclusions of the
studies because the theoretically relevant results are within-
subject and/or within-stimuli.

2.1.4. Procedure for Experiment 1A–B

2.1.4.1. Norming. To familiarize participants with the color adjustment
procedure, each session began with 12 color-norming trials during
which participants saw a slightly colorized version of each object and
were instructed to move the mousewheel until the picture appeared
grayscale. In addition to providing practice, this allowedme to compute
a subjective grayscale value for each participant/stimulus combination.

Fig. 2. The general procedure for Experiments 1 and 2 (stimuli shown are those used in Experiment 2A–E). Participants viewed the adaptor images for 20 s and then saw an achromatic
version of the image. Participants were instructed to shift the image along the line of chromatic adjustment until it looks subjectively grayscale.
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2.1.4.2. Test. The test session began immediately after the norming ses-
sion. Participants were instructed that they would see a “specially col-
ored version of a photograph” and that they should stare at the
fixation cross superimposed on it without moving their eyes. After
20 s, the adaptor image was replaced by a grayscale image, which typi-
cally appeared to participants to be in vivid color. Participants were
instructed to use the mousewheel to adjust the image until it appeared
grayscale (moving thewheel back and forth as necessary), andwere ad-
ditionally told “it's important that you perform the adjustment quickly
and without moving your eyes.” The fixation cross remained on the
screen through the enture color-adjustment period. The trialwas termi-
nated by clicking themouse atwhich point participants were presented
with a break screen asking them to blink and rest their eyes before be-
ginning the next trial. The procedure is depicted in Fig. 2.

Because effects of afterimages and actual images are additive
(e.g., an orange afterimage can be offset by a blue input) participants
needed to shift the image in the direction opposite to the induced
color for the image to appear subjectively achromatic. The primary de-
pendent measure was the final value selected on the line of chromatic
adjustment. Moving the mousewheel shifted the colors of the image
along an interpolated line of chromatic adjustment with the image
from which the inducer was created on one end and a hue-inverted
image on the other. In the middle of the continuum was an achromatic
version of the image.

This procedure differs from the memory-color adjustment proce-
dure used in recent work on effects of memory color on appearance
(Hansen et al., 2006; Kimura et al., 2013; Olkkonen et al., 2008; Witzel
et al., 2011) in that participants adjusted colors along a single dimension
rather than in two dimensions, but given the color-opponent processing
in afterimages, this methodological choice is justified (Zaidi et al., 2012)
and enabled much faster responses.

2.2. Statistical analyses

All the statistical analyses were conducted using linearmixed effects
modeling (Barr, Levy, Scheepers, & Tily, 2013) using lme4 R package
(Bates et al., 2014) using centered (sum-coded) predictors. Regression
coefficients (b), and t-values are reported as absolute values. The text
and figures make the direction of the effects clear. The analyses made
use of the maximum random effect structure that yielded converging
solutions. Precise model syntax can be found in the Appendix A.

2.3. Experiment 1A results

The final adjustment values corresponding to subjective grayscale
values for all the conditions are shown in Fig. 3. More positive values in-
dicate that the participant needed to dial in more chroma to offset the
afterimage signaling amore vivid afterimage. The six images comprised
three distinct colors (green, yellow, and orange). Color category was
added as a predictor in the model to ensure that any effects generalize
across the tested colors. To remove any idiosyncratic biases in perceived
grayscale of particular images, individuals' norming responses were in-
cluded as a further covariate. This meant that if a person's subjective
judgment of a green armchair during the norming session was .05
(tending toward yellowness), this became the effective grayscale
against which afterimages were computed.

Mean response timeswere 6545ms. and did not predict the final re-
sponse. This may appear surprising given that the afterimage fades over
time and thus people taking longer to respond should, in theory, have
responses closer to 0. However, afterimages induced by this procedure
last considerably longer than 6 s.

As shown in Fig. 3, participants needed to add about 14% of the op-
ponent color to an achromatic image for it to appear subjectively gray-
scale. All 6 images produced highly significant afterimages, M = .144,
t's N 12, p's ≪ .0005. The green-color images (broccoli/chair) produced
the strongest afterimage, followed by yellow (banana/shirt), and orange
(pumpkin/car). These between-color differences in afterimage vivid-
ness are unlikely to relate to color knowledge and probably arise due
to differences in saturation/brightness between the three colors.

The critical testwaswhether adapting to objectswith intrinsic colors
(e.g., a pumpkin) led to stronger afterimages than adapting to identical-
ly colored objects without intrinsic colors (e.g., an orange car). Indeed,
as shown in Fig. 2, this was the case. Intrinsically-colored images in-
duced stronger afterimages than arbitrarily-colored images, b = .02,
95% CI= [.002–.032],3 t = 2.48, p = .02. The effect of intrinsicality did
not interact with color, i.e., was not reliably different for the three object
pairs, p N .5.

3 The 95% confidence intervals pertain to the critical statistic being tested. In this case,
the statistic is b ((regression slope), i.e., the difference between intrinsically-colored and
arbitrarily colored images).

Table 1
Key manipulations, sample sizes, and exclusion information for all experiments.

Experiment Key manipulation Stimuli Stimulus
orientation

Num.
trials

Final n Number
excluded

1A Intrinsic vs. arbitrary color Intrinsic vs. arbitrary
single objects

Upright 12 40 2 exp. error
2 norming outliers
2 afterimage outliers

1B Atypical colors vs. arbitrary colors. Intrinsic vs. arbitrary
single objects

Upright 12 38 4 norming outliers
1 afterimage outlier

Total 78 11
2A Conventional vs. arbitrary Books, castles Upright 6 20 1 exp. error
2B Inverse conventional vs. inverse arbitrary Books, castles Upright 6 24 2 norming outliers
2C Inverse conventional vs. inverse arbitrary vs.

conventional vs. arbitrary
Books, castles Upright 8 18 4 norming outliers

2 afterimage outliers
2D Conventional vs. arbitrary Books, castles Upside-down 6 38 3 norming outliers
2E Inverse conventional vs. inverse arbitrary vs.

conventional vs. arbitrary
Books, castles Upside-down 8 24 1 norming outliers

1 afterimage outliers
2F Conventional vs. atypical color Original castle and novel

scene with intrinsic color
Upright 12 26 0

Total 150 14
3 Color/grayscale judgments. Books, castles Upright vs. upside-down 272 12 0

Total 12 0

Note: Norming outliers are participants whose grayscale judgments deviated by more than 10% from grayscale. Afterimage outliers were participants whose subjective grayscale values
were N3SDs of the experiment mean. Most of these likely resulted from participants misunderstanding the instructions or noncompliance.
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2.4. Experiment 1B results

Experiment 1B was identical to Experiment 1A except the image
colors were now switched to make the intrinsically-colored objects ap-
pear in atypical (unexpected) colors, e.g., people adapted to a blue ba-
nana so that a subsequently presented grayscale banana appeared as
orange.

As in Experiment 1A all objects induced highly reliable afterimages,
M=.143, t'sN 8, p≪ .0005. In contrast to Experiment 1A, therewasnow
no effect of intrinsicality, b= .004, 95% CI= [− .013, .022], t b 1. The in-
teraction between intrinsicality and experiment was not reliable, p N .2,
but there was now a highly significant intrinsicality-by-color interac-
tion,χ2(2)=42.0, p≪ .0005 (LMEmodel comparison) and a highly sig-
nificant third-order interaction between color, experiment, and
intrinsicality, χ2(6) = 57.24, p ≪ .0005. Unpacking this interaction
showed that the experiment-by-intrinsicality interactionwas highly re-
liable for broccoli/chair and banana/shirt, b= .04, 95% CI= [0.01, 0.07],
t = 2.72, p = .006: typically-colored broccoli and banana were per-
ceived more vividly than their atypically colored versions, with no cor-
responding change for the arbitrary-colored objects. The pumpkin/car
behaved differently: thepumpkin continued to induce stronger afterim-
ages than the car whether the pumpkin was orange (typical) or green
(atypical). Conceivably, a green pumpkin (which looks like a squash
or watermelon) violates color expectations less than orange bananas
or yellow broccoli. Mean response times were 6630 ms. and were not
correlated with the final response.

2.5. Discussion of Experiment 1A–B

Intrinsically colored objects (banana, pumpkin, broccoli) produced
more vivid afterimages than equivalently colored objects without
strong color priors (t-shirts, cars, armchairs). The effect of intrinsicality
disappeared when the objects were presented in atypical colors: the
yellowness of a banana is perceived more vividly than a yellowness of
a t-shirt, but an orange banana and an orange t-shirt afterimages are
perceivedwith equal vividness. The effect of intrinsicality in Experiment
1A was quite small, however, and the interaction between Experiment

1A and B was only reliable for two of the three object pairs. In addition,
although presenting intrinsically colored images in atypical colors elim-
inated the difference between afterimages produced by intrinsic and ar-
bitrarily colored objects, it did not reduce the strength of the afterimage
in absolute terms. In Experiment 2, I investigated in a more rigorous
way the predictions outlined in Section 1.2 by using images of entire
scenes that contain substantially richer internal structure.

3. Experiment 2

Experiment 2 extends the results of Experiment 1 in three ways:
First, insofar as perception of one part of a scene may be powerfully
shaped by expectations derived from another part of the scene, the ef-
fects of intrinsically colored objects may be stronger when viewing en-
tire scenes of the kind used in Experiment 2 (Fig. 2). Second, unlike
Experiment 1 in which participants gained some experience with the
critical objects in the norming phase of the study, in Experiment 2, the
critical stimuli were not seen prior to the color adjustment task. Third
and most importantly, Experiment 2 sought to test in more detail how
the alignment of top-down priors and bottom-up inputs (schematized
in Fig. 1B) affects perception of color afterimages. For example, a percept
of an orange sky and purple grass is expected to be less vivid than a per-
cept of a blue sky and green grass. If the image were simply turned
upside-down, this difference in vividness should be reduced because ro-
tating the image should weaken the deployment of top-down predic-
tive signals. Appearance of typically colored and oriented images was
therefore expected to be more influenced by priors than appearance
of atypically colored or unusually oriented images (see also Lupyan &
Spivey, 2010b).

Experiment 2 used an almost identical design to Experiment 1,
but contrasted a natural scene image with an arbitrarily-colored in-
door image. To control for stimulus confounds, a series of sub-studies
were run that contrasted different versions of the images, e.g., upright
vs. upside-down, conventionally colored vs. atypically-colored (see
Table 1), ensuring that the observed differences in afterimage vividness
could not be ascribed to low-level visual differences between the stim-
uli. Using linear mixed effects models made it possible to pool the data

Fig. 3. Results of Experiment 1A (Typical colors) and 1B (Atypical Colors). Higher values indicate a stronger afterimage. Inset shows the effects for each of the 6 items tested, separated by
color for Experiment 1A. Error bars indicate standard error of themeanwith between-subject variance removed (Morey, 2008). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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across all the studies, with the models correctly partialing out variance
for within-subject and between-subject factors.

3.1. Experiment 2A–E

3.1.1. Procedure
Participants began by practicing the color nulling procedure using

the stimuli from Experiment 1A. This ensured that participants received
practice with the procedure without giving them any experience with
the stimuli used in themain task. Following this practice session partic-
ipants completed the afterimage nulling procedure with the bookcase
and castle stimuli. As there was no longer a norming session (partici-
pants were seeing the castle/bookcase images for the first time during
the afterimage task), the dependent variable—amount of opposite
colors dialed in to offset the afterimage—was no longer residualized
on the practice nulling session as in Experiment 1.

Pilot testing revealed large carryover effects between stimuli and
difficulty with eye-strain for sessions beyond about a dozen trials, mak-
ing it impossible to simultaneously test all theoretically-relevant con-
trasts in a single study. Therefore, the contrasts were tested in a series
of sequentially-run experiments that varied only in which stimuli
were included. The stimuli and key manipulation used in Experiment
2A–F are summarized in Table 1.

3.1.2. Results and discussion
The first prediction was that the intrinsically-colored castle scene

would inducemore vivid afterimages than the arbitrarily-colored book-
case scene. The second prediction was that this difference would shrink
or be eliminated when the induced image deviated from prior knowl-
edge, such as when it was presented upside-down or in inverted colors
(see Fig. 1, footnote 1).

The mean subjective grayscale values for all the conditions are
shown in Fig. 4. More positive values reflect a more vivid afterimage.
As the figure makes clear, the intrinsically-colored castle scene yielded
a more vivid afterimage than the arbitrarily-colored bookcase scene,
but only when in the correct orientation and when the percept yielded
a normally colored scene. This conclusion was supported by a series of
linear mixed effects models predicting the subjective grayscale value
from an intercept only model, to a full model with three main effects
stimulus-category (castle, bookcases), stimulus orientation (upright,
inverted), stimulus color (conventional, inverse), their two-way inter-
action, and the three-way interaction (see Appendix A for full model
details).

The best-fitting model included the main effects of stimulus-
category, stimulus-orientation, and stimulus-color, and two two-way
interactions: stimulus-category-by-orientation, and stimulus-
category-by-color. The means for all the conditions are shown in
Fig. 4. Castles (M = .17) yielded stronger afterimages than bookcases
(M= .14), b= .03, 95% CI=[.008, .103], t=2.30, p= .004. Upright im-
ages (M= .17) yielded stronger afterimages than upside-down images
(M = .14), b = .07, 95% CI = [.02, .13], t = 2.74, p = .007.
Conventionally-colored images (M= .18) yielded stronger afterimages
than inverse-colored images (M= .11), b= .09, 95% CI= [.05, .12], t=
5.28, p ≪ .001.

These main effects weremediated both by color (normal vs. inverse),
b= .05, 95% CI= [0.056, 0.146], t=4.01, p≪ .001, and orientation (up-
right vs. upside-down), b= .10, 95% CI= [.010, .102], t= 2.41, p = .02
(Fig. 4A). Castles yielded stronger afterimages than bookcases when pre-
sented in conventional colors, b = .19 t = 6.52, p ≪ .001, but not when
the colors were the inverse of expected ones, p N .2. Similarly, castles
yieldedmore vivid afterimages thanbookcaseswhen the sceneswereup-
right, b = .04, t = 2.76, p = .006, but not when upside-down, b = .02,
t = 1.05, p = .30. As Fig. 4A shows, the effects of color and orientation
were additive. When presented upside-down but in expected colors,
the castle yielded only marginally more vivid afterimages than the book-
case, b= .03, t = 1.75, p = .09 (third and fourth bars of Fig. 4A). When

the castle was upside-down and the colors were inverse of what was ex-
pected, the vividness of the castle afterimage was further reduced (the
right-most bar of Fig. 4A).

An analysis of RTs revealed that, as in Experiment 1, the RTs (M=
9847 ms) were uncorrelated with the color adjustment responses,
t b 1. The RTs to the castle image were nonsignificantly longer in
the convention-color/upright condition and significantly shorter in
the inverse-color condition, b= 2497, t= 4.66, p≪ .001—the condi-
tion in which the castles did not yield less vivid afterimages. In short,
differences in the rated vividness of afterimages are not explainable
by differences in response times.

3.2. Experiment 2F

One limitation of Experiment 2A–E is that the inverse-color manip-
ulation meant that the conventional and inverse-color inducers relied
on different colors, making it possible that, e.g., the orange color that in-
duced an afterimage percept of a blue sky was a more effective afterim-
age inducer than a blue-sky image that induced an orange-sky for
reasons unrelated to color knowledge (though this possibility would
not explain why simply rotating the castle led to a reduction of afterim-
age strength). Experiment 2F compared afterimages of a conventionally
colored castle to a version of the image where the colors were moved

Fig. 4. (A) Results of Experiment 2A–E, and (B) Experiment 2F. Higher values indicate a
stronger afterimage. Error bars indicate standard error of themean with between-subject
variance removed.
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fromonepart of the image to another (e.g., green sky, blue grass), there-
by equating the distribution of colors. A secondary goal of Experiment
2F was to extend the findings to a new intrinsically-colored scene.

3.2.1. Procedure
In Experiment 2F participants saw two diagnostically-colored

scenes—the original castle, and a new outdoor scene of approximately
the same vividness—and underwent the sameafterimage nulling proce-
dure used in Experiment 2A–E. The scenes were presented in conven-
tional colors and in atypical colors. The atypical (unexpected) color-
inducer had the same distribution of colors as the original inducer, but
switched greens and blues such that the sky in the afterimagewould ap-
pear green and the grass blue.

3.2.2. Results and discussion
As shown in Fig. 4B, Experiment 2F replicated and extended the

patterns observed in the earlier studies: Conventionally colored
adaptors (M = .26) led to stronger afterimages than adaptors with
unexpected colors (M = .21) as supported by a reliable main effect
of color (conventional vs. atypical), b = .05 95% CI = [.01, .09], t =
2.39, p = .02, and an absence of a stimulus-by-color interaction,
p N .5. A glance at Fig. 4A and B shows that the strength of the conven-
tional afterimages and unexpected color afterimages were very sim-
ilar to conventional and color-inverted afterimages observed in the
earlier studies.

In Experiment 2F I addressed two potential concerns about Experi-
ment 2A–E. First, I sought to further rule out the possibility that the
stronger afterimage produced by the castle scene was an artifact of
that particular image (note that the reduction of the afterimage when
simply rotated already points against this explanation). Second, follow-
ing the logic of Experiment 2B, I sought to check if an afterimage of a
color-intrinsic scene presented in incorrect (green sky, blue grass) rath-
er than opposite colors (orange sky, purple grass) would also be per-
ceived less vividly. The results show generalization to a new scene,
and show that violating expectations by using atypical rather than in-
verse colors weakens the induced afterimages (a replication of Experi-
ment 1B).

3.3. Summary of Experiment 2A–F

Experiment 2A–F replicated and extended the results of Experiment
1, with additional controls. On its own, the results of Experiment 2A—a
blue sky is effectively bluer than a blue book—can be dismissed as a
stimulus confound. However, the pattern of results across the studies
shows that the afterimage-induced colors of a color-intrinsic scene ap-
pear more vividly specifically when the inducer provides chromatic in-
formation consistent with prior expectations compared to color
information that is inconsistent with color (Experiment 2A–C, F) or
structural (Experiment 2D–E) priors—a pattern that is not explainable
by stimulus confounds.

The results of Experiments 1–2 raise an obvious question: If the visu-
al system discounts unexpected inputs (making it more difficult to see
purple-grass/orange-sky than green-grass/blue-sky) why is it that we
seem to have no trouble seeing unexpected colors?

4. Experiment 3

It is wildly maladaptive for a perceptual system to simply discount
unexpected inputs. An observer who discounts milk of an unusual
color may come to regret it. The results of Experiments 1–2 are puzzling
in this light because they appear to hint at exactly this type of
discounting. The predictive-coding framework makes a clear predic-
tion: Inputs should be discounted as a function of their precision esti-
mates. Insofar as afterimage-induced colors are unstable, e.g., unlike
conventional percepts, they fade on their own, afterimages should be
associated with relatively low precision estimates and thus easily

overridden by conflicting priors. When precision estimates are high,
however, inputs that conflict with priors may instead becomemore vis-
ible (or at least more easily detectable).

Experiment 3 tested the prediction that under conditions of higher
certainty, stronger priors lead to a facilitation in detecting unexpected
colors. In this study, participants viewed intrinsically-colored images
(the castle image) and arbitrarily colored images (the bookcase
scene), presented in either upright or upside-down orientations, and
had to simply detect if the images contained any color. Presenting im-
ages at varying levels of saturation in both expected and unexpected
colors allowed for measuring people's sensitivity in detecting the pres-
ence of color as a function of color knowledge.

4.1. Procedure for Experiment 3

On each trial, participants were presented with one of the images
used in Experiment 2A–E and were asked to press a “color” or “black
and white” key depending on whether they thought the image was in
color or not. Each image was presented upright and upside-down, and
parametrically varied on saturation from 9% color color-inverted to 9%
conventional color. On about half of the trials, the imageswere grayscale
(0% saturation). Each image was on the screen until a response was
made. In between the trials, the image was replaced by a color-noise
mask for 750ms. to interfere with any afterimages induced by the stim-
uli and to increase the effective independence of each trial. Each partic-
ipant completed 272 trials.

4.2. Results and discussion

Correct responses for the grayscale trialswere above 90% and did not
vary significantly between stimulus types: Mupright-books = 96.6%,
Mupside-down-books = 95.6%, Mupright-castle = 93.2%, Mupside-down-castle =
95.6%. Response times for grayscale trials were on the order of
840–860 ms. and did not differ by stimulus category or orientation.
The subsequent analyses hence focus on the accuracy and reaction
times of classifying a colored scene as containing color.

Fig. 5A shows a loess-smoothed psychophysical function of identify-
ing color in an image with a given level of saturation. Positive x-values
depict images colorized in the conventional way. Negative x-values de-
pict images colorizedwith inverted hue (i.e., for castle, a orange sky, and
purple grass). Not surprisingly, the likelihood of detecting color in-
creased with increasing saturation, though people's performance was
sensitive to the stimuli being judged. Logistic regression revealed a sig-
nificant three-way interaction between stimulus category (bookcase,
castle), orientation (upright, upside-down), and color (conventional,
inverted), b = −1.56, 95% CI = [−2.73, − .399], z = −2.63, p =
.008. I will begin by reporting the results for the conventionally colored
images (positive x-values).

People detected color in conventionally-colored castles (M =
.80) far more accurately than in bookcases (M = .60), b = 1.67,
95% CI= [.92, 2.41], z=4.38, p≪ .0001. Accuracy did not vary by ori-
entation of the castle, z b 1, but a post-hoc analysis of response times
(Fig. 5B, D) revealed that participants were about 110 ms. faster in
correctly detecting color in conventional, upright compared to
upside-down castles, b = 107, 95% CI = [33 ms., 180 ms.], t = 2.84,
p = .005 with no corresponding differences in RTs for the bookcase
images, t b 1 resulting in a significant category-by-orientation inter-
action, b = 121, 95% CI = [9 ms., 233 ms.], t = 2.2, p = .03.4

4 The RT analyses included all RTs b3000 ms. Errors were included in the RT analy-
ses because from the subject's perspective they were not clearly errors. Excluding
them did not appreciably change the results; indeed the above advantage for detect-
ing color in conventionally colored castles compared to bookcases increased to
150 ms.
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Turning to the ‘inversely’-colored images (negative x-values in
Fig. 5A–B), revealed a reliable stimulus-by-orientation interaction,
b=1.50, 95% CI=[0.64, 2.36], z=3.43, p= .0006 such that while per-
formance did not vary by orientation for the bookcase image, p = .3, it
was significantly higher for the normally-oriented castles (M = .64)
than upside-down castles (M = .53), b = 1.23, 95% CI = [0.57, 1.90],
z = 3.66, p b .001 (see the two right-most bars of Fig. 5C). There were
no main effects or interactions with RTs, ps N .1.

A version of Experiment 3 (n = 12) using pictures of five randomly
chosen indoor and five randomly chosen outdoor scenes replicated the
effects of improved detection of conventionally colored outdoor scenes
compared to indoor scenes, but additionally revealed a sizeable improve-
ment in performance for color-inverted compared to conventional-
colored indoor scenes. Further work is required to understand this last
result.

The goal of Experiment 3 was to investigate the role of input preci-
sion on people's ability to detect expected and unexpected colors. The
prediction was that while low-precision inputs such as afterimages
may be discounted when they contradict priors, high precision inputs
that contradict priorsmight becomemore visible. Experiment 3 showed
that people detected colors more accurately in conventionally colored
castles in comparison to an arbitrarily colored bookcase image: an

advantage in detecting diagnostic/intrinsic colors. Although the detec-
tion advantage in accuracy did not vary by image orientation, people de-
tected conventional colors considerably more quickly in upright than
upside-down castle images. People's ability to detect unexpected colors
(purple grass, orange sky) was considerably better for upright
castles—presumably owing to a stronger prior developed from viewing
natural scenes (the two right-most bars in Fig. 5C).

Together, these results show that rather than a simple
discounting of unexpected color information, the way in which
color knowledge affects color appearance depends in part on the
quality of the inputs in a way broadly consistent with predictive cod-
ing accounts of perception.

5. General discussion

Across eight studies, appearance of color afterimages was shown
to be influenced by color knowledge. In Experiment 1, people per-
ceived afterimages of intrinsically colored objects (pumpkin, ba-
nana, broccoli) as more vivid than their arbitrarily colored
counterparts (pumpkin-colored car, banana-colored t-shirt,
broccoli-colored chair). This difference disappeared when objects
with intrinsic colors were presented in unexpected colors

Fig. 5. Results of Experiment 3. (A) Likelihood of categorizing each stimulus as containing color. (B) Response times of categorization decisions. Panels C and D show the mean accuracies
and RTs of classification of colored images. Error bars indicate standard error of the mean with between-subject variance removed. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

125G. Lupyan / Acta Psychologica 161 (2015) 117–130



(Experiment 1B). The effects observed in Experiment 1, however
were quite small and it is conceivable that they reflect unaccounted
for low-level differences rather than genuine effects of knowledge.
Experiment 2A–F used scenes containing diagnostically-colored
parts (sky, grass) or arbitrarily-colored parts (books). The prediction
was that the castle scene would elicit stronger afterimages than the
bookcase scene, but that this difference should be reduced or elimi-
nated when the diagnostically-colored objects were shown in unex-
pected colors (as in Experiment 1) or when structural priors were
violated by turning the image upside-down (see Fig. 1). This rotation
preserved all the color information and so any differences induced by
the rotation could not be explained by bottom-up differences in
color. The results (Fig. 4) were largely consistent with the predic-
tions: Afterimages consistent with prior knowledge were perceived
as more vivid than afterimages than violated color priors
(e.g., orange sky, a blue sky in the lower visual field) or had no strong
priors (colors of book spines).

The findings from Experiments 1 and 2 suggest that colors con-
flicting with prior knowledge are discounted (or else colors
comporting with prior knowledge are accentuated)—a result that
appears to be maladaptive because a color that deviates from what
is expected is often more informative than an expected color. A pur-
ple banana is a banana that needs further scrutiny.5 Predictive coding
models posit that the consequences of top-down predictions are a
function of input precision. When input precision is low, as in the
case of decaying afterimages, top-down predictions may partly over-
ride the input. When inputs precision is higher, an input that con-
flicts with prior expectations may override those expectations, and
over time, the expectations are adjusted. To use an example from
Clark (2013), when a professional magician suddenly reveals an
elephant—secretly smuggled onto the stage—that elephant is a
high-precision input and will be perceived as an elephant no matter
how unexpected to the viewer. The likelihood that the visual system
is being stimulated by an actual elephant is just too great to be ig-
nored. In contrast, the (low) likelihood of a scene with an orange
sky and purple grass, when weighed against the noisy and degrading
afterimagemay result in a final percept in which the perceived colors
are adjusted toward expected ones.6 If, however, the input is associ-
ated with higher precision, unexpected inputs may becomemore vis-
ible. This prediction was tested in Experiment 3.

In Experiment 3, participants made binary color vs. grayscale
judgments on stimuli of varying saturation with the aim of deter-
mining whether color knowledge can help people detect deviations
fromwhat is expected. Focusing only on effects for which image con-
founds can be ruled out, the results show that conventional colors in
upright castles were detected more quickly than conventional colors
in upside-down castles, and, importantly, that unexpected colors in
upright castles were detected more accurately than the same colors
in upside-down castles. These results support the hypothesis that

when input precision is increased, deviations from expectations
can lead to improved detection of those violations (see also
footnote 5).

5.1. Limitations of the present studies

The small number of stimuli used in these studies mean that the
results should be treated with some caution and, as always, further
work is necessary to examine the generality of the effects observed
here.7 For example, it may turn out that perception of certain colors
is more subject to top-down effects than of other colors (Witzel et al.,
2011).

An acknowledged shortcoming of these studies is that they are
not performed with state-of-the-art color calibration equipment8

and the line of chromatic adjustment is defined in device-
dependent color space. Because the key comparisons in the present
studies are within subjects and/or within-items, the critical results
cannot be explained by color calibration confounds. Here are several
methodological critiques, and my responses:

(1) Critique: Diagnostic-color and arbitrary-color images were
not equally colorful and thus differences in afterimages are
caused by bottom-up differences in colors rather than top-
down differences in color knowledge/expectations.
Response: This critique does not account for why turning a
diagnostic-color image upside-down (Fig. 4A) or reassigning
colors to different parts of the scene (Fig. 4B) reduced the viv-
idness of the afterimage. Note also that is not at all clear how
to equate two images on “colorfulness” because it is impossi-
ble to know a priori which colors in which locations contrib-
ute most to the subjective vividness of a scene.

(2) Critique: The line of chromatic adjustment is distorted be-
cause it relies on a device-dependent color space.
Response: It is true that the adjustments are unlikely to reflect
a linear trajectory through a perceptually calibrated color-
space such as CIE, but this would be true for all the stimuli
and does not explain the pattern of results.

(3) Critique: The achromatic images being adjusted are not truly
achromatic with respect to the adapting white-point.
Response: The white-point was calibrated, albeit with a
consumer-grade device. If this calibration were imprecise, it
would be equally imprecise for all stimuli and participants
and does not explain why, e.g., turning the image upside-
down should affect the vividness of the afterimage.

Another potential concern is that unusually colored images elicit-
ed more eye movements than more conventional images which
would have the effect of weakening the afterimage. Although partic-
ipants were instructed to maintain fixation on the center fixation
cross, eye movements were not measured. There is indeed evidence
that in a free-viewing context color-diagnostic objects presented in
unusual colors (e.g., a green hand, a green stop-sign) elicit earlier
eye movements than color-arbitrary objects (green coffee cup)

5 This “scrutiny” often takes the form of attention—a process which some have ar-
gued should be viewed as a “surprisal-reducing mechanism” (Itti & Baldi, 2009; see
Anderson, 2011 for discussion). This characterization of attention arguably offers
far greater promise for understanding the process of attending than the enormously
resilient metaphor of attention as spotlight (Cave & Bichot, 1999). The finding that at-
tentional effects involve semantically-based retuning across the visual hierarchy sup-
port this characterization (Çukur, Nishimoto, Huth, & Gallant, 2013).

6 The idea that prior knowledge impacts the processing of incoming information as a
function of the “quality” of the incoming signal is also well expressed in schemata theory,
e.g., as implemented in connectionist networks (Rumelhart, Smolensky, McClelland, &
Hinton, 1986).

7 The images used herewere not deliberately chosen to produce the desired effects and
were simply thefirst images tried by the author. The subsequently conducted studies used
the same images to allow comparison between studies without worrying about low-level
differences between the images.

8 This equipment was unavailable at the author's institution. This informed the design
of the study from the start so that the conclusions did not depend on absolute color
measurements.
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(Becker, Pashler, & Lubin, 2007). Similarly, “weird” elements in an
image (e.g., two dogs “playing” checkers) elicit earlier fixations
than more conventional elements (e.g., two dogs looking at a food
bowl) (Rayner, Castelhano, & Yang, 2009). However, unusual scenes
do not appear to elicit more overall eye movements (Rayner et al.,
2009). Moreover, there is nothing inherently unusual about an or-
ange car or yellow t-shirt or even a green chair (Experiment 1) and
participants were already fixating on the object—there was no rea-
son to make any eye movements. In the case of viewing scenes (Ex-
periment 2), one might imagine that the upside-down bookcase
image would elicit the most eye movements because the text on
the book-spines was now reversed (and thus unusual), yet this rota-
tion did not affect the strength of perceived afterimages (Experiment
2). In Experiment 2F, participants were asked if they thought they
were able to maintain fixation the entire time the pictures were
displayed. All responded saying ‘yes’ or ‘for the most part’. Turning
to Experiment 3, it is again unclear how eye movements can explain
the differences in rapid judgments of whether the displayed scenes
were colored or grayscale. Although it is not possible to conclusively
rule out a contribution of eye movements to the present results, eye-
movement differences do not parsimoniously explain the observed
pattern of the results across Experiments 1–3.

5.2. Experimenter demands and the El Greco Fallacy

Might the present results be explained by participants responding to
experimenter demands? If participants simply adjusted the image to
what they thought it should look like, the effects would be reversed be-
cause the nulling procedure requires participants to adjust the images
opposite of their normal colors. Moreover, most participants do not
have expectations that staring at a color will lead them to see the oppo-
site color. I surveyed 127 college undergraduates asking what color a
gray square would appear to them after they spent a while staring at a
blue square. The results are presented in Table S1. 38% responded that
they would see a gray square. 24% that they would see a blue square.
Only 7% responded that they would see a ‘yellow’ square. Similar per-
centages were obtained when participants were asked after completing
a task involving afterimages. That people's introspections are somistak-
en even after participating in the afterimage task speak against the possi-
bility that the results can be explained by some sort of strategic
responding.

An intriguing critique of some effects of knowledge on perception
was recently offered by Firestone and Scholl (2014). Named the El
Greco Fallacy, after the artist, it refers to cases when putatively top-
down effects are observed in cases when they should not be because
both the stimulus being judged and the measuring instrument ought
to be similarly affected (i.e., if El Greco had astigmatism and actually
saw theworld distorted in themanner depicted in his paintings, then
he ought to have seen the canvas as distorted as well, thereby cancel-
ing out the distortion). Given the current procedure, the measuring
instrument was the percept itself, and so the El Greco Fallacy does
not apply. As an aside, the logic articulated by Firestone and Scholl
is only valid if top-down effects are a source of a constant distortion
in the manner of simple optical prisms. This assumption is
contradicted by numerous results showing the selective ways in
which top-down knowledge impacts perception (Lupyan, 2015 for
review).9

5.3. Neural feedback, cognitive penetrability, and predictive-coding

Neural processing of visual input is subject to rapid and pervasive top-
down modulation (e.g., Hupe et al., 2001; Bar et al., 2006; Den Ouden,
Kok, & de Lange, 2012; Kok, Jehee, & de Lange, 2012; see Gilbert & Li,
2013; Muckli & Petro, 2013 for reviews). The top-down “modulation” is
not just tweaking of bottom-up driven responses, but may comprise the
large bulk of neural activity (Fiser, Chiu, & Weliky, 2004). Between 60%
and 80% of the response variance of V1 neurons, for example, appear not
to reflect bottom-up input (Olshausen & Field, 2005) which is perhaps
not surprising given that as much as 95% of synapses in layer IV of V1
have non-geniculate sources (Muckli & Petro, 2013 for review). Even pro-
ponents of strictly feedforward models of visual object recognition ac-
knowledge the necessity of back-projections for normal perception and
for being aware of what we see (e.g., Serre, Oliva, & Poggio, 2007).

Given that such evidence for interactivity in neural processing
has been known for some time, it is interesting that a common re-
sponse of the remaining supporters of the thesis that perception is
impenetrable to knowledge is an appeal to Fodor (1988) who
brushed aside all evidence from neural interactivity by writing,
“Heaven knows what function descending pathways serve. One
thing is certain: If there is no cognitive penetration of perception,
then at least descending pathways aren't for that” (see Norris,
McQueen, & Cutler, 2000 for a similar argument in the domain of
speech perception). We now knowmuch more about what these de-
scending pathways are for. They're for making vision smart (Lupyan,
2015 for discussion). By deploying knowledge for anticipating and
constraining the processing of incoming information, perceptual sys-
tems are able to produce more efficient codes, rapidly disambiguat-
ing otherwise ambiguous information (Bar et al., 2006), informing
processing in one modality using information from other modalities
(e.g., Zhou, Jiang, He, & Chen, 2010), and sometimes even using
something as seemingly non-perceptual as linguistic syntax to in-
form early visual processing during reading (Dikker, Rabagliati,
Farmer, & Pylkkänen, 2010).

By emphasizing the importance of input precision, predictive
coding models solve a longstanding problem of how to “decide”
whether to discount an unexpected input or to emphasize it owing
to the importance of deviations from expectations (what Erdelyi,
1974 referred to as “perceptual defense” vs. “vigilance”). In Experi-
ments 1–2, low precision chromatic inputs are partly overridden by
priors. When the inputs are of higher precision (Experiment 3),
prior knowledge can actually help to detect expectancy violations.
These findings are broadly consistent with predictive-coding accounts
of perception. Although the precise mechanisms of error reduction re-
quire further elucidation, the present results show that at least some as-
pects of visual appearance are altered by knowledge and expectations,
further blurring the line between perception and cognition.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.actpsy.2015.08.006.
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