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Effects of Language on Visual Perception

Gary Lupyan,’* Rasha Abdel Rahman,? Lera Boroditsky,® and Andy Clark**®

Does language change what we perceive? Does speaking different languages
cause us to perceive things differently? We review the behavioral and electrophys-
iological evidence for the influence of language on perception, with an emphasis
on the visual modality. Effects of language on perception can be observed both
in higher-level processes such as recognition and in lower-level processes such
as discrimination and detection. A consistent finding is that language causes us
to perceive in a more categorical way. Rather than being fringe or exotic, as they
are sometimes portrayed, we discuss how effects of language on perception
naturally arise from the interactive and predictive nature of perception.

Even comparatively simple acts of perception are very much more at the mercy of the social patterns
called words than we might suppose [1].

No matter how influential language might be, it would seem preposterous to a physiologist that it could
reach down into the retina and rewire the ganglion cells [2].

Language as a Form of Experience That Affects Perception

What factors influence how we perceive the world? For example, what makes it possible to
recognize the object in Figure 1A? Or to locate the ‘target’ in Figure 1B? Where is the head of
the bird in Figure 1C? Why do we perceive some colors in Figure 1D as more similar than others”?
Research on visual perception has sought to answer such questions by focusing largely on the
physical properties of the stimuli and their interactions, (e.g., [3-5]). However, it has been long
appreciated that what we perceive is determined not only by the physical properties of the current
input, but also by our perceptual history. For example, consider how much harder it is to read
upside-down text [6] or to match a stranger’s versus a friend’s photograph to their actual face [7].
Such effects of prior experience on perception can be observed not only for arguably ‘higher-level
processes such as recognition, but also for ‘lower-level’ processes such as amodal completion [8],
computing shape from motion [9], and computing 3D structure from object contours [10] and
binocular disparity [11]. Although there is continued debate on the ‘modularity’ of some of these
processes [3] (cf. [12,13]), there is relative consensus that what we perceive is importantly shaped
by prior experience, (e.g., [14]). But what kinds of experiences matter?

A growing number of studies show that perception is affected by language. Most uncontrover-
sially, experience with language affects perception of language. In learning English, we learn to
perceive certain speech sounds as being functionally similar. This process of categorization dis-
torts our perception, causing us to perceive physically equidistant sounds as more or less similar
depending on our linguistic experience [15,16]. Such effects do not end at the level of individual
speech sounds. Our experience with grouping certain combinations of speech sounds into larger
units (such as words) causes us to perceive the same sounds differently, depending on which
word they are embedded in [17,18]. Learning to read has profound impacts on a large part of
our visual cortex (e.g., [19]); the consequences can be readily appreciated by comparing the
experience of looking at a familiar versus an unfamiliar writing system.

Trends in Cognitive Sciences, Month 2020, Vol. xx, No. xx

Highlights

Our ability to detect, discriminate, and
recognize perceptual stimuli is influenced
both by their physical features and our
prior experiences.

One potent prior experience is language.
How might learning a language affect
perception?

We review evidence of linguistic effects
on perception, focusing on the effects
of language on visual recognition, dis-
crimination, and detection.

Language exerts both off-line and on-line
effects on visual processing; these
effects naturally emerge from taking a
predictive processing approach to
perception.

"University of Wisconsin-Madison,
Madison, WI, USA
2Humboldt-Universitat zu Berlin, Berlin,
Germany

3University of California, San Diego, CA,
USA

4Universi'(y of Sussex, Brighton, UK
SMacquarie University, Sydney, Australia

*Correspondence
lupyan@wisc.edu (G. Lupyan).

https://doi.org/10.1016/j.tics.2020.08.005 1
© 2020 Elsevier Ltd. All rights reserved.



https://doi.org/10.1016/j.tics.2020.08.005
https://doi.org/10.1016/j.tics.2020.08.005
https://doi.org/10.1016/j.tics.2020.08.005
https://doi.org/10.1016/j.tics.2020.08.005

Cell

REVIEWS

(A) (B)

L]
L

LT LT
-

[

(C) (D)

[ | f
1T
‘AR

Trends In Cognitive Sclences

Figure 1. Some Examples of Stimuli Used to Study Influences of Language on Visual Perception. (A) A two-tone
‘Mooney image’ that becomes much easier to recognize after a verbal hint. (B) A sample visual search display. The target
(odd-one-out) shape becomes easier to find when informed that the shapes are rotated numbers. (C) The location of this
bird’s head depends on expectations set up by reading descriptions of motion. (D) Psychophysically equidistant colors
that may become perceived more categorically under the influence of the names ‘green’ and ‘blue’. See text for details.

More controversially, experience with language and its in-the-moment use can affect perception
of nonlinguistic material. In the next sections we review evidence of how language affects different
aspects of perception. We focus on visual perception, not because effects of language on per-
ception are limited to the visual modality, but because this is where most work has concentrated.
We begin by describing two types of linguistic effects on perception: off-line effects in which long-
term experience with a specific language affects how people subsequently experience certain
perceptual inputs, and on-line effects in which some aspect of language, such as an object’s
name, interacts with in-the-moment visual processing. We then review empirical evidence of lin-
guistic influences on perception, distinguishing effects of language on (visual) recognition, dis-
crimination, and detection. We discuss whether differences in linguistic experience give rise to
differences in perceptual experience and consider how the variety of the findings we review
may arise from the workings of a perceptual system that seeks to minimize prediction error
[20-22].

Effects of Language on Recognition, Discrimination, and Detection

Effects of Language on Recognition

Seeing a chair and recognizing it as such requires relating the current perceptual input to a pre-
vious state (this thing before me is a chair because it looks more like things I've seen previously
that are chairs compared with things that are not chairs). To recognize is to categorize [23].
Might the categories we learn as part of learning a language affect visual recognition? Because
we are so well-practiced in recognizing conventionally presented images, a productive method
of studying recognition involves presenting incomplete or otherwise fragmented images. For
example, only about 25% of people can recognize the object shown in the ‘Mooney’ image in
Figure 1A. That is, given this input, most people’s perceptual systems fail to make sense of it.
The same input can be made meaningful if we are allowed to glimpse a conventional version of
the image of the sort we have more experience recognizing. Glimpsing the conventional image
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Image of Figure 1

changes not just the ultimate recognition success, but causes measurable changes at various
levels of the visual hierarchy [24,25], for example, affecting people’s ability to detect image con-
tours, a relatively low-level perceptual task [12].

Could similar increases in recognition be achieved with the aid of language? In a now classic
paper arguing for the cognitively impenetrable nature of visual perception, Pylyshyn argued that
‘verbal hints [have] little effect on recognizing fragmented figures’ [26] such as those in Figure
1A. Contradicting this assertion, a recent study [13] found that recognition can be substantially
increased by simply giving verbal hints. For example, providing people with 15 alternatives as
choices increases correct recognition of Figure 1A to 89%. Recognition can be increased to
nearly the same level by providing a superordinate cue such as ‘musical instrument’. One way
to think about such effects is that the labels help to form hypotheses against which the incoming
visual input can be tested. An otherwise uninterpretable perceptual input becomes interpretable
when processed in light of hypotheses generated by language (see the section Making Sense of
the Evidence).

Can language change our recognition of a visual scene, even when the visual scene is unrelated
to the linguistic content? In one study [27], people viewed an image of an ambiguously facing bird
(Figure 1C) after they had seen real upward or downward motion or read a linguistic description of
physical motion (entirely unrelated to birds). Afterwards, participants were simply asked to draw a
worm in the bird’s beak. People’s recognition of the bird’s head was affected similarly by viewing
real motion and by reading stories describing physical motion.

[t may be tempting to interpret some of these effects as effects of language on downstream inter-
pretations of perceptual processes which themselves remain free from linguistic influence [28].
One way of distinguishing processes that are more clearly perceptual from those that may reflect
higher-level semantic or downstream decision-making processes is by using event-related brain
potentials (ERPs). Some ERPs are associated with the processing of low-level visual properties as
lightness and contrast (P1 component, peaking at around 100 ms [29]) or high-level perception of
objects and faces (N1 component, peaking at around 150 ms) [30,31]. Other components such
as the N400 are better described as tracking more amodal (or multimodal) semantic processing
[32,33]. These studies find that holding perceptual experience constant while varying how much
one learns about a novel object, through language, affects early visual processing of objects.
Learning an object’s name or function decreases subsequent P1 amplitudes during passive
viewing [34,35]. The early changes in visual processing indexed by these electrophysiological
markers are associated not only with changes to visual recognition [36] but also in changes in dis-
crimination and conscious awareness, as the next two sections describe.

Effects of Language on Discrimination

While recognizing an image requires that it be discriminated from possible alternatives, it is
certainly possible to successfully discriminate images without recognizing them. For example,
we can discriminate between the letters of a novel alphabet without being able to recognize the
letters. We can use discrimination tasks to tell whether effects of language on perception extend
beyond recognition.

Many investigations of how language affects discrimination have been done in the domain of
color. Indeed, the finding that color names may influence color discrimination is often viewed as
a key test of the Whorfian hypothesis [39-41], even though Whorf never proposed that language
should affect color perception. This topic has been extensively reviewed elsewhere [41-45], but
we highlight a few findings that show the variety of ways that language affects color perception.
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What makes color an excellent domain of study is that the physical stimulus is continuous, but we
tend to talk about it categorically. Learning color words necessarily requires learning to group
colors into categories named by our language, treating different colors that have the same
name as more similar than psychophysically equidistant colors named with distinct labels. This
in turn may cause us to perceive color in a more categorical way. Adding to the intrigue, some
languages have many color words, while others have few or none (Box 1).

Box 1. Cross-Linguistic Differences in the Language of Perception

Although all languages provide ways for describing perceptual experiences, and there are broad similarities in the naming
systems, there are also surprisingly large differences in the details. Take just about any word that describes a perceptual
property (‘spicy’, ‘triangle’, ‘loud’, ‘blue’) and you will find none to be universal [121,122]. These lexical differences have
often been minimized by pointing out that people can always invent words if they are needed [123]. But this confuses
the potential for the actual. It is true that over decades or centuries languages change to meet new communicative de-
mands. But this does not mean that an individual speaking a language lacking color words can, on their own, invent them!
In the course of learning English, children become experts at naming (categorizing) some part of color space. In compar-
ison, Lao speakers learn to categorize a far smaller part of color space (Figure IB). But, compared with English speakers,
they have more consistent classification of certain odors [124]. People speaking either language can become expert
categorizers in any domain, but having the requisite words as part of the core vocabulary ensures that all speakers do.

Another point of confusion concerns the relationship between the number of terms in a language and their use. It is not that
languages with fewer color terms necessarily have terms that apply to larger regions of color space (see [125] for a model
that connects naming consistency to communicative efficiency]). Rather, languages with fewer color terms sometimes
have large regions of color space without conventional names [124,126] (Figure IB). Without a conventional label, it is dif-
ficult (perhaps impossible) to cue the category. How do you get someone to attend to blues without being able to use
‘blue’?
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Figure I. Cross-Linguistic Differences in the Language of Perception. (A) Cross-linguistic correlations in color
nameability for 40 Munsell color chips of maximum saturation; smaller numbers indicate that the most nameable colors
in one language are not the same as those in another. (B) Nameability of maximally saturated colors in English and Lao
(colors shown are RGB approximations of Munsell color chips). (C) For all perceptual modalities, greater nameability is
associated with greater use of abstract terms (e.g., ‘yellow’, ‘scratchy’) as opposed to source-based terms (‘lemon’,
‘sandpaper’). Data shown are based on reanalysis of [124] and are made conservative by including phrasal heads only;
‘dark blue’ and ‘light blue’ are counted as the same response. Abbreviations: ASL, American Sign Language; BSL, British
Sign Language RGB, red/green/blue.
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Image of Figure I

Language has been shown to influence color perception in two main ways, roughly in line with so-
called off-line and on-line influences schematized in Figure 2. First, are studies showing that peo-
ple speaking different languages show somewhat different patterns of color discrimination.
Russian speakers who obligatorily distinguish between light and dark blues in language show a
relative advantage in discriminating colors that span the light/dark blue boundary compared
with English speakers [46]. Similar differences in discrimination have been found when comparing
speakers of other languages that differ in their color naming such as English and Korean (e.g., [47]).
Use of electroencephalography (EEG) has allowed researchers to see that cross-linguistic
differences in color discrimination tasks emerge as early as 100 ms after viewing a color [48-50].
Similar effects on early visual processing are observed processing objects that are lexically distin-
guished in one language, but not another [51].

Second, are studies showing that color discrimination can be altered within an individual by ma-
nipulating linguistic factors. Having adults learn new color categories (analogous in some ways to
children learning to produce and comprehend color labels) can induce more categorical color
perception [562-54], a finding consistent with both off-line and on-line effects of language
(Figure 2A). At the same time, several lines of evidence show that interfering with labels can re-
duce or eliminate categorical effects [55] and negate cross-linguistic differences [46]. Conversely,
overt use of color labels during the task has been found to exaggerate categorical influences on
perception. For example, presenting participants with a color word (e.g., ‘blue’) immediately prior
to requiring them to discriminate one color from three others (a simultaneous odd-one-out dis-
crimination task) dramatically improves their ability to distinguish blues from greens while slightly
reducing accuracy of distinguishing highly typical blues from slightly less typical blues [38]. Incor-
porating category typicality (as differential association between an exemplar and its label) into the
model makes a further counterintuitive prediction: as the activation of a category label shifts per-
ceptual representations toward category prototypes, the shift will not only impact colors strad-
dling the category boundary, but also spread to colors around the middle of the category, as
schematized in Figure 2B. Indeed, hearing a color label such as ‘blue’ was found to increase
the accuracy with which people distinguished typical blues from less typical blues [38]. Another
intriguing effect is that of stimulus order. Imagine seeing a green color swatch G4. Then after a
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Figure 2. Schematic of (A) Off-Line and (B) On-Line Effects of Color Labels on Color Representations. (A) Colors
that are originally represented as equally discriminable may become gradually warped by the categorization required for
comprehending and producing color names. (B) Categorical effects may be produced by a color percept activating a
verbal label which then feeds back and warps the color representation into a more categorical form in-the-moment. Note
that because the labels ‘blue’ and ‘green’ are more strongly associated with some blues and greens than others (denoted
by line thickness), a more categorical representation leads to expansion not only around the category boundary, but also
around the middle of the category (see also Figure 2 in [37]) leading to improved discrimination of atypical members from
slightly more typical ones [38]. On-line effects may be caused by covert labeling (automatic activation of labels by
perceptual inputs) and further exaggerated by overt labeling such as actively naming a color or reading/hearing a color term.
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Image of Figure 2

short delay, you are asked to select whether you saw G4 or Go. It turns out that accuracy is sub-
stantially better if G4 is the more typical green than if G, is the more typical green [56,57]. One
explanation is that the category label is activated more strongly by the more typical color and
the label then feeds back to warp the representational distance between the two color stimuli, en-
abling more accurate matching [38]. (The effect of presenting the most prototypical stimulus first
is predicted to reverse if both G4 and G, are near the category prototype.)

Somewhat more circumstantial evidence for the involvement of language in color perception
comes from findings that in color discrimination tasks people show a larger between-category
advantage in the right visual field (which projects to the left hemisphere) than in the left visual
field [47,53,55,58,59], that verbal interference selectively affects between-category discrimination
in the right visual field [55], and that the lateralization difference is already observed in early visual
processing as measured by EEGs [60]. In related studies using functional neuroimaging, it has
been found that color discrimination tasks evoke activity in cortical regions associated with
naming (e.g., the left middle superior temporal gyrus), that this activation is stronger for colors
viewed in the right visual field [61], and that discriminating easy to name colors evoked greater
activity in ‘naming’ regions compared with discriminating harder to name colors [62]. Not every-
one agrees that finding categorical perception in the left hemisphere implies that language plays
or has played a causal role. One alternative is that the observed lateralization effect may stem from
the left hemisphere being more specialized for categorical processing regardless of language
[63,64]. The lateralization effect has also not always replicated [65,66], suggesting that it may
be more fragile than originally thought, a critique that has also been levied against
studies showing effects of labels on color memory (cf. [67,68]) (see Outstanding Questions).

Effects of language on visual discrimination are not limited to colors. Ascribing meaning to simple
objects such as referring to the shapes in Figure 1B as ‘rotated numbers’, leads to more efficient
visual search [69]. Search can likewise be improved simply by referring to an object by its name.
For example, when repeatedly searching for a ‘B’ among ‘p’s, hearing find the B’ shortly before
the search display speeds reaction times compared with hearing ‘find the target’, even though
the label was uninformative because ‘B’ was always the target [70]. People’s visual discrimination
of novel ‘alien’ creatures is improved by learning to associate them with dissimilar verbal labels
(oneis ‘loud, nocturnal, strong’ and another is ‘sticky, soft, wet’) compared with semantically sim-
ilar labels (‘loud, nocturnal, strong’ versus ‘loud, heavy, strong’) [71]. The earlier-discussed study
with Mooney images [13] showed not only that verbal hints improved recognition, but also found
that after being exposed to verbally labeled Mooney images, participants were better able to vi-
sually discriminate one Mooney image from another compared with a condition in which the
same images were viewed equally often, but without being labeled. This effect was mediated
by changes in P1 amplitudes and increases in alpha-band oscillations, especially in the left hemi-
sphere. As we discuss in the section ’"Making Sense of the Evidence’, these results are consistent
with labels preferentially activating category-diagnostic features, properties that most effectively
distinguish category members from non-members, which results in better recognition of category
members and more efficient discrimination between members and nonmembers [36,72].

Effects of Language on Detection

An even more basic perceptual process is simple detection wherein people are asked to indicate
whether they have seen anything during a specific time period. Simple detection tasks require nei-
ther recognition nor discrimination (except for discriminating an object from the background).
When shown briefly presented backward masked letters, people’s ability to correctly indicate
whether a letter (any letter) was present, was affected by hearing the letter’'s name immediately
prior [73]. It is as though the name prepared the visual system to detect (not just recognize) a
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class of shapes denoted by the label. A shortcoming of this study is that although brief masked
presentation makes stimuli difficult to see, it does not block semantic processing [74], leaving
open the possibility that hearing a label affected downstream processes rather than something
as basic as visual detection. A later study [75] used continuous flash suppression (CFS) to sup-
press perceptual processing at a much earlier level [76]. In a typical CFS experiment, a meaningful
image is presented to one eye while high contrast flashing patterns are presented to the other.
The flashing patterns act to suppress awareness of the image through a form of binocular rivalry.
Hearing a word (e.g., ‘pumpkin’) prior to viewing a CFS display made an otherwise invisible image
(e.g., of a pumpkin) visible. The detection advantage was limited to trials on which the verbal cue
matched the suppressed stimulus: hearing ‘pumpkin’ did not cause people to confabulate seeing
pumpkins where none existed. Because images suppressed through CFS are not processed se-
mantically, this detection benefit cannot be ascribed to downstream effects of language. Subse-
quent work supported the interpretation that the detection advantage stems from labels
activating the shape of the to-be-detected object [77].

Another method of investigating the influence of language on visual awareness involves detecting
stimuli in a stream of rapidly presented images. A classic finding is that when participants are
asked to detect two targets (Ty and T,) within a visual stream of non-target images, presenting
T, causes people to miss T, if T, occurs 200-500 ms after T4, a so-called attentional blink
[78]. A popular explanation is that ongoing processing of T1 hinders T»'s access to a second pro-
cessing stage that is necessary to produce a durable representation of the stimulus [79]. In a re-
cent study [80], researchers used pictures of rare objects as the T,. When subjects previously
associated the pictures with verbally described functions (e.g., ‘this is an incubator for chicken
eggs’), they showed an increase in conscious detection. This effect was predicted from modula-
tions of the P1 component approximately 100 ms after stimulus presentation. In another study
using the attentional blink paradigm it was shown that native Greek and Russian speakers,
who distinguish categorically between light and dark shades of blue, showed boosted detection
of T, when it was marked by verbal contrast [48]. A P1 modulation for within- and between-
category colors was registered in Greek participants (Russian speakers were not tested), and
this modulation predicted their behavioral advantage on trials with lexically discriminated colors.
By contrast, German speakers who do not habitually refer to light and dark shades of blue by
different names showed no behavioral or electrophysiological differences between blue and
green targets. In at least some cases, our native language predicts what we will consciously
perceive.

Making Sense of the Evidence: Predictive Processing and the Reach of
Language into Perception

On a naive view of perception, the idea that language can affect what we see is absurd. How can
language, a high-level cognitive process unique to humans, affect the seemingly low-level mech-
anisms subserving visual processing? In the words of the opening quote, language cannot ‘reach
down into the retina and rewire the ganglion cells’ [2]. But our conscious visual experiences and
the processes involved in even the simplest of perceptual tasks cannot be reduced to the firing of
retinal ganglion cells [45,81]. On the view of perception as a process of predictive inference, inves-
tigated under the somewhat coextensive banners of ‘predictive processing’, ‘active inference’,
and ‘hierarchical predictive coding’, perceptual experiences arise at the meeting-point of gener-
ative model-based predictions and sensory stimulation (evidence). Percepts reflect ‘best guesses
" of the world and these guesses are informed by prior knowledge, current sensory evidence, and
context-varying estimations of their relative reliability (‘precision’) [82—-84]. This process is not
unique to visual perception and may be a useful framework for processing in all modalities, includ-
ing the perception of pain (Box 2).
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Box 2. The Effect of Language on the Perception of Pain

Just as the proximate cause of visual experience is photons entering the retina, the proximate cause of peripheral pain is
the stimulation of various thermal, chemical, and mechanical receptors. But just as visual perception cannot be reduced to
retinal stimulation, the experience of pain is not reducible to stimulation of these peripheral receptors. Of particular rele-
vance to this review is the phenomenon of placebo analgesia, in which the same stimulus is experienced as either more
or less painful depending on a person’s expectations (e.g., [110-113]). The phenomenon of placebo analgesia is broadly
consistent with the idea that perceived pain reflects both the properties of the external stimuli and the person’s (certainty-
weighed) expectations [114,115]. Having expectations of more or less pain does not simply bias people to respond to an
external stimulus more or less strongly. Rather, these expectations modulate nearly the entire physiological profile of pain
[113,116]. Some brain regions (e.g., posterior insula) continue to code the actual intensity of the stimulus somewhat inde-
pendently of people’s expectations, but this is ultimately irrelevant when we consider that our subjective experiences of
pain tracks with physiological pain responses such as heart rate, skin conductance, and pupil size which are all modulated
by our expectations [114]. Verbally induced expectations in particular (‘I will now apply a cream that will help reduce the
pain’) play an especially important role [110,117-119].

It may be tempting to brush aside this example of language affecting perception as that of language simply being used as a
tool to set up expectations. In principle, these expectations can be set up through other, nonlinguistic methods, for exam-
ple, by learning to pair arbitrary shapes with a more or less painful stimulus [114]. But consider the difficulty of
nonlinguistically conveying to a subject the idea that spreading this cream on their left arm will, in 15 minutes, reduce
the amount of thermally induced pain in their arm [117]. Even if, in principle, these expectations can be set up
nonlinguistically (e.g., by associating the cream with a nonplacebo analgesic) what language adds is fast, precise, and
highly flexible deployment of these expectations [120].

There are two main ways in which language impinges on the predictive process, which roughly
map onto the off-line and on-line distinction in Figure 2. The first is what happens during language
learning. Here, labels can be viewed as supervisory signals (just as they are in supervised neural
networks that have shown impressive successes in image recognition). In effect, linguistic labels
act like artificial tasks, prompting the learner to actively seek ways to discriminate the labeled
positive examples from the negative ones. If this ball is labeled ‘red’, what is it that made it ‘red’
and not ‘green’? Exposure to linguistically labeled cases provides important information
concerning the predictability of sensory patterns.

It is easy to see how labeled cases are critical for developing domain expertise. A trained botanist
can learn to recognize thousands of plants and species by sight. In the absence of the teaching
signals provided by language, there would need to be sufficient non-label-invoking tasks to drive
the correct 'wedges' through a dense and confusing representational space. The same process
is also at work in the learning of other categories we may take for granted. In learning to name
colors, we not only learn where in color space our particular language places lexical boundaries,
but we learn that color is a domain worth separating from other aspects of visual experience such
as texture and vividness, an abstraction we might not make were it not for (some) languages
demanding that we learn a color vocabulary. An important further source of perception-relevant
knowledge gleaned from language may come from exposure to its distributional structure. By
simply minimizing prediction error of the labels (and their co-occurrences) as they occur in lan-
guage input, it is possible to learn a surprising amount of semantic structure, including relation-
ships between perceptual features (Box 3).

Understanding this off-line role of language (Figure 2A) is critical to understanding how language
influences perception. The usefulness of ‘blue’ or ‘pumpkin’ in guiding perception hinges on first
learning the association between these words and their referents. It is logically possible that as
one learns a language, habitual use of its terms gradually yet permanently reshapes perceptual
representations. Following this early ‘formative’ period, however, language may no longer be ac-
tively involved in perception. However, findings that manipulating language during a perceptual
task (e.g., through verbal interference and trial-by-trial verbal cueing), affects performance on a
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Box 3. Visual Knowledge from Language Statistics

Associating some discriminable stimuli with common names and others with different names, a process of acquired sim-
ilarity and distinctiveness [127], may be just one of the ways in which language ‘trains’ perception. As we have long known,
languages are not just form-meaning pairings, but are coherent symbolic systems [128]. Word meanings cannot be dis-
sociated from word use. The meaning of ‘bedroom’ derives in part from the existence of contrasting words (‘bathroom’,
‘kitchen’) and the contexts in which these words are used [129]. What this means is that co-occurrence statistics between
words can act as a kind of echo of real-world linkages and causal relationships. A learning system whose sole experience
is language can learn a surprising amount about the world by running a self-supervised learning algorithm on the incoming
language stream (e.g., by trying to predict the next word and minimizing the prediction error based on the word that is ac-
tually observed) [130,131]).

As these learning algorithms are applied to larger amounts of text, we are realizing just how much structure people have
‘pushed’ into the co-occurrence statistics of languages. Consider the observation that congenitally blind people, who have
no perceptual experience with color whatsoever, nevertheless know quite a bit about the color of various objects and the
similarity structure of color space [132—135]. Recent investigations showed that it is possible to recover this type of infor-
mation from distributional semantics alone (cf. [136,137]). The finding that the distributional structure of languages con-
tains rich information about visual appearance does not tell us how much people rely on it for learning about what
things look like, but it does raise the possibility that distributional semantics may be an important teaching signal for our
perceptual systems [138].

range of perceptual tasks are difficult to square with a purely off-line account. Rather, language
appears to modulate perception in the moment.

This brings us to the second way language influences perception: by providing a categorical
expectation within which incoming perceptual input is processed. Imagine that you need to rec-
ognize a cow as quickly and accurately as possible. This can be achieved by preactivating the vi-
sual features that distinguish cows from non-cows. This suite of features is precisely what a
categorical label like ‘cow’ is well designed to activate. And indeed, people are better able to recog-
nize familiar images like that of a cow when it is preceded by its categorical label (‘cow’) than equally
informative but less categorical nonverbal cues such as the sound of a cow mooing [72,85]. (Though
there is some evidence that nonverbal auditory cues may be more effective in simple detection tasks
[86].) The idea that labels elicit categorical expectations can be cast in terms of ‘category-based
attention’ [70,87,88]. For example, we can tell someone to attend to vehicles or to faces or to
colors (instructions that rapidly warp neural representations across the visual hierarchy
[89,90]). As experimenters, we often take for granted our ability to use language to guide atten-
tion in this way, but consider the difficulty of placing a person into that attentional state without
being able to rely on language. We can try to use alternatives: a picture of some vehicle, some
face, a patch of color. But these are necessarily specific [91] and have limited power in cueing a
categorical state [38,72].

Viewed in this way, what makes linguistic cues different from nonlinguistic ones is their patterns of
associations. Any perceptual experience of a car or cow or the color green is quite specific; with
language, by contrast, the same words are used to refer to a range of objects/events/relations;
people learn that ‘car’, ‘cow’, and ‘green’ can be used to refer to any member of these categories.
This makes labels ideally suited for setting up the sorts of categorical (and relational) expectations
that are difficult to set up effectively using nonlinguistic means. That said, the underlying mecha-
nisms by which linguistic and nonlinguistic cues set up expectations are likely to be much the
same.

In short: learning a language allows us to use words and larger verbal constructions as a metabol-
ically cheap and flexible means of modifying predictive cascades in ourselves and in others,
altering what top-down information is brought in and how much influence it has at different levels
of perceptual processing.
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This predictive coding perspective may help to make sense of the limits on the effects of language
on perception and the often-observed task sensitivity. For example, people who speak lan-
guages with different color naming schemes do not appear to differ in how small a color difference
they are able to perceive (i.€., size of their just-noticeable difference) [54,92]. Within a language
t00, the size of a just-noticeable difference is not well correlated with the placement of lexicalized
color categories [93] and categorical color perception itself is surprisingly task-dependent
[94,95]. These findings have led some researchers to wonder whether such effects are limited
to tasks that are somehow linguistic rather than ‘truly’ perceptual [96]. For example, some have
argued that ‘because labeling is not an inherent part of a visual process, ...we should not expect
it to have a significant effect on visual appearance or discrimination ...the closer a color task is to
language, the more likely it is that it will be affected by the terms in one’s language’ [97].

The predictive coding framework obviates the need to decide how linguistic or perceptual a given
task is and instead poses the question of whether linguistic guidance helps to reduce prediction
error [21]. In a task requiring discriminating small (largely within-category) differences in hue,
linguistic guidance would be expected to do little. In a task requiring people to remember an
item’s exact position [98] or color [40,99], the finding that people’s memory is affected by cate-
gories (both linguistic and nonlinguistic) can be usefully modeled by merging continuous percep-
tual representations with more categorical (discrete) conceptual/linguistic ones [40], with the
original perceptual representation left intact. Yet we continue to see influences of categories on
tasks where memory demands are minimal (e.g., simultaneous discrimination or reproduction
of a currently visible stimulus such as matching one color to another [40,99]). One might think
that in such tasks our decision mechanisms could simply draw on the earlier more continuous
representation prior to it being ‘contaminated’ by categorical codes. Yet, as the data show, this
is not always possible. On an alternative ‘perceptual warping’ account, the merging of continuous
and categorical information happens through top-down feedback of categorical representations
onto (the more continuous) perceptual representations. On the warping account, the reason
labels can affect visual discrimination and reproduction is that the automatically activated labels
are altering the lower-level perceptual representations themselves [38]. The level at which
language has its effect is expected to depend on where in the perceptual hierarchy a change
will reduce prediction error the most (cf. [100]). This is, of course, a rather vague claim and we
recognize that much more rigorous work is required to precisely connect the idea of error
minimization to patterns of behavior in experimental tasks. As a starting point, attempts to explain
top-down effects on speech perception in terms of minimizing prediction error [101,102] offer a
promising direction. Despite different conceptions of where precisely the merging of perceptual
and categorical information is happening, what all these accounts have in common is that behav-
ior in even low-level perceptual tasks is determined by more than bottom-up perceptual inputs.
For language to change perception it hardly needs to ‘reach down into the retina’ [45].

Differences in Behavior versus Differences in Subjective Experience

Does finding that people speaking different languages perform differently on some perceptual
tasks mean that learning different languages causes us to literally see the world in a different
way? Do results showing that language affects objective behavior on perceptual tasks mean
that language affects how the world appears? Some think the answer is a clear no. One critic
sums up such effects as ‘a passing flicker, that only painstaking experiment can reveal, in no
way creating a different way of seeing the world’ [103]. The experiments we review here indeed
make painstaking attempts to rule out alternative explanations for the observed changes in
behavior, attempting to demonstrate the perceptual nature of these effects. Many of these differ-
ences in accuracy and reaction times are likely not accompanied by substantive changes to sub-
jective experience. This observation raises two questions.
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What matters more: objective differences in behavior or subjective differences in experience?
Imagine two participants (A and B) performing the same difficult discrimination task. Both inform
us that they could not distinguish the items whatsoever. Participant A’s data reveals chance-level
performance. Participant B performs substantially better and well above chance. Do we conclude
that A’s and B’s perception was identical? Or do we put our trust in the observed difference in
objective behavior? It is, of course, interesting to find dissociations between subjective experi-
ence and objective behavior, but faced with choosing a measure, there is good reason to choose
one based on objective behavior.

Would we know a difference in subjective experience if it existed? The collective shock of the
Internet and vision scientists on discovering #theDress (https://en.wikipedia.org/wiki/The_dress),
and the continued shocks whenever new stimuli of this sort are discovered: the jacket, the shoe,
Yanny or Laurel, shows just how strongly we assume that the same perceptual input should
produce the same perceptual experience. It is only by comparing notes that we can appreciate
that sometimes it does not. How often such discrepancies occur and whether they can be
predicted by differences in our experiences (language among them) is yet to be determined.
Importantly, effects of prior experiences on subjective appearance are not willy-nilly. There is no
reason to expect #theDress to appear differently to people speaking different languages. There
is a theoretical reason to expect that it would appear differently to people who wake up early versus
those who sleep in, and in fact, it does [104].

Some have wondered why top-down effects on perception seem to be so difficult to experience
subjectively compared with, for example, visual illusions [105]. The compellingness of the best
visual illusions depends on our ability to flexibly manipulate the visual stimulus. For example, the
Adelson grid causes us to see two identically shaded squares as having different lightness
[106]. What makes such illusions so compelling is that we can experience changes to our subjec-
tive experience by covering up the inducer, at which point the two squares start to look identical.
The problem is that we cannot manipulate conceptual knowledge or prior experience with lan-
guage in this way. We cannot pause being English speakers or switch on-and-off our knowledge
that a face being shown is our mother’s. As experimenters, we can manipulate top-down influ-
ences somewhat, for example, by testing bilinguals in different languages [45], by downregulating
impacts of language through verbal interference or noninvasive neural stimulation, or by upregu-
lating them through overt presentation of labels [107]. When these manipulations do lead to dif-
ferences in behavior, we can infer that our normal experience must be, to some extent,
influenced by the linguistic factor being manipulated. Sometimes even these subtle manipulations
lead to differences in subjective experience [108] (see also Box 4).

Concluding Remarks

The opening quotes contrast two perspectives on the relationship between language and per-
ception. There is some irony that Sapir, whose view was not informed by any of the empirical find-
ings we discuss, is much more on the mark than Pinker, who relegates the idea that language
affects thinking and perceiving to a time when ‘scientists were in the dark about how thinking
works or even how to study it [2].

At one time, both language and perception were thought to be informationally encapsulated, their
outputs feeding into domain-general cognitive systems, but not influencing one another [109].
The evidence we review here shows that language influences basic perceptual processing,
affecting performance on tasks such as discrimination and detection, tasks that might seem to
be wholly perceptual in nature. Far from a radical claim, this conclusion may naturally follow
from viewing perception as an interactive process seeking to minimize prediction error. Becoming
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Outstanding Questions

What is the relationship between
language learning and the development
of perceptual expertise? For example,
are children who leamn color and shape
words earlier, better able to selectively
attend to these properties or to flexibly
switch between them? Does better
naming lead to better and more robust
visual recognition or deployment of
attention?

What kinds of cross-linguistic differences
lead to the most reliable differences in the
perceptual experience of their speakers?
Are there specific types of words or
specific grammatical devices that are
especially influential in their guiding
of perception? For example, words
denoting finer-grained distinctions
may exert stronger influences than
words denoting coarser-grained
distinctions [146].

Are there systematic differences in
perceptual experiences between people
who experience inner speech to a
greater versus lesser degree?

What task properties are most
important for determining the level at
which language influences perceptual
processing?

Can we come up with critical
experiments to determine whether the
increase in categorical perception due
to language stems from warping of
lower-level perceptual representations
or a merging of continuous perceptual
representations with more categorical
ones?
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Box 4. Language and Mental Imagery

Conventional perceptual experiences are triggered by perceptual inputs from the outside world. Most of us are also able to
entertain quasi-perceptual states in the form of mental imagery. Like conventional percepts, mental imagery can be trig-
gered by external perceptual events. For example, seeing a friend’s face may trigger a vivid mental image of the last time
we saw her. Other times, what triggers visual imagery is language. When we want someone to experience the view from
the hotel window without actually being there to see it, we do it with language. Most people also regularly use language
directed at themselves, triggering mental images through inner speech [139]. As is now well known, imagery and percep-
tion engage overlapping neural circuits [140-142] and evoke similar representations of object categories [143].

Processing language that describes consistent visual motion in one direction has been shown to produce sufficiently vivid
mental images to cause direction-selective motion adaptation in the visual system (i.e., cause a motion after-effect illusion).
One study [144] tested for motion after-effects following explicit motion imagery and after processing language containing
literal or metaphorical motion (without any instructions to imagine). The results demonstrate that language-evoked mental
imagery produced direction-selective adaptation in the visual system.

It is interesting to consider what our visual imagery ability would be like in the absence of language altogether. Would our
ability to form mental images be compromised if we had no language to help cue them? In a recent study [145], re-
searchers varied the amount of (verbally transmitted) knowledge participants learned about novel objects, which they then
either saw or had to imagine. The authors reasoned that greater semantic knowledge would lead to a stronger ability to
reactivate the object’s visual properties through top-down feedback. Semantic knowledge modulated early components
of both object perception and visual imagery with similar P1 amplitude modulations in both tasks. Greater semantic knowl-
edge also led to faster onset of visual imagery. These results show that in addition to influencing perceptual processing of
actually presented objects, verbally transmitted knowledge can shape mental imagery.

alanguage user requires that we become expert at categorizing thousands of visual percepts into
named categories. This experience equips us not only with the ability to efficiently communicate
about our perceptual experiences, but to then use these words to flexibly deploy task-relevant hy-
potheses within which incoming perceptual information can be made more meaningful
(see Outstanding Questions).
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