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a b s t r a c t

It is shown that educated adults routinely make errors in placing stimuli into familiar, well-
defined categories such as TRIANGLE and ODD NUMBER. Scalene triangles are often rejected as
instances of triangles and 798 is categorized by some as an odd number. These patterns
are observed both in timed and untimed tasks, hold for people who can fully express the
necessary and sufficient conditions for category membership, and for individuals with
varying levels of education. A sizeable minority of people believe that 400 is more even
than 798 and that an equilateral triangle is the most ‘‘trianglest’’ of triangles. Such beliefs
predict how people instantiate other categories with necessary and sufficient conditions,
e.g., GRANDMOTHER. I argue that the distributed and graded nature of mental representations
means that human algorithms, unlike conventional computer algorithms, only approxi-
mate rule-based classification and never fully abstract from the specifics of the input. This
input-sensitivity is critical to obtaining the kind of cognitive flexibility at which humans
excel, but comes at the cost of generally poor abilities to perform context-free computa-
tions. If human algorithms cannot be trusted to produce unfuzzy representations of odd
numbers, triangles, and grandmothers, the idea that they can be trusted to do the heavy
lifting of moment-to-moment cognition that is inherent in the metaphor of mind as digital
computer still common in cognitive science, needs to be seriously reconsidered.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction

In October, 2012 Slate magazine reported on a court
case concerning a disputed election of a juvenile judge in
Hamilton County, OH (Hasen, 2012). At issue were split-
precinct polling places that required poll workers to hand
out the appropriate ballots based on a rule such as whether
the voter’s address was even or odd. A poll worker testified
to sending a voter with the address ‘‘798’’ to vote in the
precinct for voters with odd-numbered addresses. Court
testimony reveals that when asked whether the house
number 798 was even or odd, the poll worker responded:
‘‘Odd.’’ (Tracie Hunter v. Hamilton County Board of Elections,
2012). The remaining testimony follows:

Q. . .So on Election Day, if somebody came in with an
address 798 and you had two ranges to choose from,
you would choose the odd for them?
A. Yes.
Q. Okay. And is that how you did it for all the ballots
that you looked up on Election Day?
A. To determine if they were even – yes.
Q. To determine if they were even or odd, you looked at
the first digit of the address?
A. No. I looked at the whole address.
Q. And [if] there were more odds than even numbers, it
would be an odd address?
A. Yes.

Although we can all agree with Hasen’s conclusion that
‘‘no one should lose the right to vote because a poll worker
can’t tell an odd from an even number,’’ it is worth consid-
ering whether such mistakes reveal something deeper
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about human cognition than an individual’s confusion
about the definition of numerical parity. In a series of
experiments, I show that such classification errors are en-
demic, even when individuals’ explicit definitions for
determining category membership appear entirely correct.
I argue that the reason people err in classifying items into
categories with clear boundaries and known membership
criteria is that human categorization algorithms are inher-
ently sensitive to the particulars of the input. Thus,
although the proposition N IS EVEN is either true or false,
the mental representations—the psychological concept of
parity1—may display the kind of graded, probabilistic struc-
ture that is characteristic of other concepts with fuzzier
boundaries.

The question of how concepts are represented by the
mind is at the very core of cognitive science (Fodor,
2001; Murphy, 2002; Prinz, 2004). The past 50 years has
seen classical theories of concepts stressing necessary
and sufficient conditions give way to theories stressing
vagueness and context-dependence (Barsalou, 1987;
Hampton, 2006; Lakoff, 1990; Medin & Smith, 1984; Prinz,
2004; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976;
Rosch, 1973). In large part, these theories were created to
account for the ease with which people adapt their knowl-
edge to novel contexts (e.g., Clark, 1983; Fauconnier &
Turner, 2003). Much of the evidence used to support these
probabilistic and prototype-based theories of concepts
came from studies in which one measures how people
identify category members under various circumstances.
In a now classic paper, Armstrong, Gleitman, and Gleitman
(1983) challenged the idea that such tests can tell us much
about the nature of conceptual representations by showing
that both categories like FRUIT and ODD NUMBER showed
graded structure as revealed by typicality ratings and long-
er classification times of ‘‘atypical’’ members (cf. Laro-
chelle, Richard, & Souliëres, 2000; cf. Sandberg, Sebastian,
& Kiran, 2012). Armstrong et al. (1983) argued that be-
cause it is inconceivable that someone who knows the def-
inition of numerical parity would truly believe that some
numbers are odder than others, the finding that categoriz-
ing members from such categories as ODD NUMBERS—palpably
different, according to the authors from fuzzier categories
like PET and FRUIT—meant that the results from rapid classi-
fications tasks must reflect functioning of peripheral iden-
tification procedures rather than tapping into ‘‘core’’
conceptual content (see Geeraerts, 1989 for discussion;
and Gleitman, Armstrong, & Connolly, 2012 for a restate-
ment of this position). Thus, although the difference in
the time to classify an apple and a coconut as fruits may
stem from a more ‘‘central’’ position of apple within the
feature-space of FRUIT, the finding that it takes longer to
identify 18 than 22 as EVEN cannot, according to the
standard view, reflect such a difference. I present a series
of studies showing that people, in fact, represent some
numbers as odder than others, some triangles as more

triangular, and argue that these effects stem from a failure
to fully abstract from the details of the input making hu-
man algorithms qualitatively different from context-free
computer algorithms that have inspired classical cognitive
science.

Understanding the computations that underlie classifi-
cation is relevant not only for understanding explicit cate-
gorization, but also informs theories of cognition more
broadly. For example, many language parsers require
words to be classified into abstract categories on which
further computations are performed (Chomsky, 1995; cf.
Anderson, 2006; Sleator & Temperley, 1995). Such assump-
tion have led some to argue that e.g., infants’ sensitivity to
the similarity structure of the syllable sequences ABA and
CDC arises from algebraic computations that treat syllables
as context-independent variables (Marcus, 1999; cf.
Seidenberg, 1999). On some theories, such symbolic
manipulation is not limited to any special domain, but
characterizes the entirety of mental processes (e.g., Galli-
stel & King, 2009). Given the relative simplicity of e.g.,
the algorithm for computing numerical parity, any sym-
bolic device worth its salt should be able to abstract from
the ‘‘surface’’ properties of the input in computing parity.
The 13 experiments below test this basic hypothesis. For
convenience, a summary of the basic manipulations and
results is listed in Table 2.

2. Experiment 1. Speeded parity judgments

In the first experiment participants completed a stan-
dard classification task requiring judgments of numerical
parity. Of interest was whether people who could all artic-
ulate the correct definition of parity would nevertheless
make errors in classifying numbers having opposite-parity
digits, such as 798.

2.1. Participants and procedure

Ten undergraduate students participated for credit.
Each trial began with a fixation cross (0.9–1.1 s) followed
by a 1–4 digit numeral displayed for 1.0 s or until response.
The numerals appeared in a random position within an
invisible horizontally-oriented rectangle (!15" " 5"). Each
digit subtended !0.6" " 1" of visual angle. On half of the
trials, the numerals were shown obliquely (±45" or ±60").
This oblique presentation helped to measure the contribu-
tion of perceptual-selection errors, as described below.
Each participant completed 16 practice trials during which
incorrect answers or timeouts were indicated by buzzes,
followed by 243 experimental trials (Table 1) with timeout

Table 1
Distribution of trials in Exp. 1.

Number of digits Number of opposite-parity digits

Zero One Two Three

One 27a – – –
Two 24 24 –
Three 24 24 24 –
Four 24 24 24 24

a Zero was omitted; (1–9) " 3 repetitions.

1 It is necessary to distinguish between concepts in the philosophical
sense, concerned with the actual state of the world, and concepts in the
psychological sense, concerned with mental content—how people actually
represent the world. It is this psychological definition that is used here (see
also Hampton, 2012).
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buzzes only. Participants responded by using their left and
right index fingers with hand-to-parity counterbalanced
between participants.

2.2. Results and discussion

The dependent measures were accuracy and correct
reaction times (RTs). Timeouts (1.8%) were coded as errors;
excluding timeouts entirely did not change any of the anal-
yses. Overall accuracy and RTs were 90.2% and 600 ms,
respectively. A comparison of odd and even trials showed
that parity did not affect RTs, F < 1, but odd numbers were
classified somewhat more accurately (Modds = .92,
Mevens = .88), F(1,9) = 8.94, p = .004.

The critical analyses involved examining responses as a
function of properties of the digit: number of digits, and the
number of opposite-parity digits (henceforth #OPD), ranging
from 0 to 3. As shown in Fig. 1 (top), RTs increased substan-
tially when the numeral contained more digits (even con-
trolling for numerical magnitude), F(1,9) = 7.15, p = .008,
and, critically, with increasing #OPD, F(1,9) = 51.08,
p < .0005; judging the parity of 3-OPD numerals took about
50 ms longer than judging parity of 0-OPD numerals.

Accuracy was not predicted by number of digits, F < 1,
but, as clearly visible in Fig. 1 (bottom), was very reliably
predicted by #OPD, F(1,9) = 19.49, p < .0005 (GLMs). A lo-
gistic regression including parity and #OPD as response
predictors showed that for each opposite parity digit con-
tained in the numeral, participants were 1.24 times more
likely to classify it incorrectly, z = #2.85, p = .004.

Displayed orientation of the numerals did not affect
accuracy, but reliably predicted RTs: F(1,9) = 19.97,
p < .0005 with slower RTs for non-canonically oriented
numbers (linear model including also the predictors
above). The predictive power of opposite-parity digits did
not reliably interact with the orientation of the displayed
number, F(1,9) = 2.00, p = .16; the trend was for a stronger
effect for canonically oriented than oblique numbers (the
relevance of this finding will become important in the dis-
cussion below).

The results show that the time and accuracy with which
people classify numbers as odd or even are strongly pre-
dicted by surface properties of the input. All participants
‘‘knew’’ what made a number even or odd. Nevertheless,
their errors were not random, as might be expected if they
simply pressed the wrong key or misapplied the ‘‘rule’’ for

Table 2
A summary of tasks, manipulations, and core findings.

Experiment n Task description Basic manipulation Basic finding

1 10a Speeded parity judgments Parity judgments of 1–4 digit
numerals with a 1s response
deadline

Participants are slower/less accurate at judging the
parity of numbers having more opposite-parity digits
(#OPD), e.g., 798

2A 193 Unspeeded parity
judgments

No response deadline Replication of 1: participants make more errors on
numerals with higher #OPD

2B 100 Unspeeded parity
judgments

Numerals are spelled out Replication of 2A

3A 25a Speeded parity
judgments + flanker
congruity task

Correlating performance between
speeded parity-judgments and
flanker congruity task

Replication of 1: Effect of digit-length is on RTs is
predicted by flanker performance, but effect of #OPD is
not

3B 108 Unspeeded parity
judgments + unspeeded
flanker congruity task

Correlating performance between
unspeeded versions of parity and
flanker tasks

Replication of 2A: No relationship with flanker
performance

3C 98 Unspeeded parity
judgments

Individual digits are now color-coded
as in Exp. 3B. People are asked to
explain strategy

Replication of 2A. People with correct definitions still
show effect of #OPD. Those who explicitly mentioned
looking at the last digit did not

4 75 Unspeeded parity
judgments + typicality
questions

Predicting effect of #OPD from
beliefs about gradedness of parity

Participants who believe e.g., that 400 is a better even
number than 798 are more adversely affected by #OPD

5A 145b Classifying shapes as
triangles and judging
typicality of triangles

Classification of triangles as a
function of their typicality

Non-canonical triangles are less likely to be classified as
triangles

5B 80 Classifying shapes as
triangles

Like 5B but choices now include non-
triangles

Replication of 5A

5C 85 Classifying shapes as
triangles

Like 5B but participants have to
respond twice and justify their
choices

Replication of 5A, 5B. Individual responses are internally
consistent

5D 65 Making inferences of a
basic geometric property

Like 5A, but participants make
inferences instead of over
classification

Atypical triangles are more likely to be judged as not
having angles that add up to 180"

6A 83c The ‘‘Eligible Contestants’’
task

Only grandmothers can enter the
contest

Grandmothers who are older and have more
grandchildren are judged as more likely to win a contest
for which all grandmothers are equally likely to win

6B 50 The ‘‘Eligible Contestants’’
task

Anchoring effect confound check Results inconsistent with anchoring-based explanation
of Exp. 6B

a Exps. 1 and 3A were run in a lab with college undergraduates. The remaining experiments were run on Amazon Mechanical Turk.
b Two separate groups participated: 96 completed the triangle classification task and 49 the typicality-rating task.
c Two separate groups participated: 50 completed the ‘‘Eligible contestants’’ task and a separate group of 33 were asked to rate the contestants on how

typical of a grandmother each was.
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some numerals. People who ‘‘knew’’ perfectly well that
numbers ending on 8 are even numbers, were nevertheless
likely to make errors on numbers like 798 (indeed, 798 was
classified as odd 17.5% of the time).

3. Experiment 2A. Removing time pressure

Although participants in Experiment 1 had ample time
to respond to each digit (timeouts occurred on <2% of the
trials), the experiment imposed some time pressure, by de-
sign. The goal of Experiment 2 was to determine whether
people are also more likely to misjudge the parity of num-
bers such as 798 when there is no time pressure.

3.1. Participants and procedure

Two hundred eight participants from the US and India
were recruited from the online service Amazon Mechanical
Turk. In this and subsequent studies using Mechanical
Turk, it is important to validate the quality of the answers
by distinguishing individuals who genuinely tried to do the
task from those who attempted to minimize effort by e.g.,
not reading the instructions or clicking randomly. I elimi-
nated any participants who failed to respond to one of
the questions (n = 2), those who appeared to respond
randomly (overall accuracy <60%), or those who responded
identically to the two parity questions, n = 13, leaving a
final sample of 193.

Each participant was shown the same 18 three-digit
numbers and asked to click a checkbox next to all the num-
bers that were odd. They were then shown the same 18
numbers again and asked to click on all the ones that were
even (parity order counterbalanced). The original number
list was generated randomly with the constraint that the
numbers have 0–2 opposite parity digits. Following the
two parity questions, participants self-reported their edu-
cational level, age, and gender. To measure explicit knowl-
edge regarding the rules governing odd/even membership,
participants were asked to describe the difference between
odd and even numbers. Three research assistants indepen-
dently coded the responses for correctness/completeness
(1–5 scale) and for classified definition type: definition
(e.g., even numbers can be divided by 2 without a remain-
der), examples (e.g., numbers ending on 0, 2, 4, 6, or 8 are
even), both, or neither. Agreement was high (Cronbach al-
phas >.9); a final score/definition type was obtained
through subsequent consultation between the raters.

3.2. Results and discussion

The majority of participants had perfect performance,
but almost 30% made errors, either failing to include a
number in the correct category or including a number in
the incorrect category. The basic error patterns are shown
in Figs. 2 and 3. To determine the source of the errors, I ran

Fig. 1. Results of Experiment 1, showing RTs (top) and error-rates (bottom) as a function of the number of opposite-parity digits (x-axis) and number of
digits (color). Points represent subject means and lines represent linear fits to performance of individual subjects. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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a logistic regression predicting responses from the actual
parity of the digit, #OPD, participants’ educational level
and the correctness and type of their definition. The likeli-
hood of choosing a numeral was, of course, predicted by
the actual parity of the number and the parity being sought
by the prompt, z = 17.628, p$ .0001 but it was addition-
ally predicted by #OPD, z = #4.034, p$ .0001. Neither
education, nor the correctness and type of definition pre-
dicted performance, nor did these factors interact with
the observed effect of #OPD, z < 1.5. There were no
differences between American and Indian participants in
accuracy, nor was there a difference in the effect of
opposite-parity digits on the performance of the two
groups, z ! 0, despite the Indian group reporting consider-
ably higher educational achievement, F(1,189) = 84.44,
p < .0001 (51% of the American sample reported having a
college degree compared to 91% among the Indian group).

Although the likelihood of making an error for a 0-OPD
number like 400 or 119 was very low (M = 0.3%), the like-
lihood increased almost 10-fold for numbers like 213,
M = 2.8%, and then increased 1.25 times again for numbers
like 798: M = 3.5%, v2(2) = 80.97, p < .0005. If subjects with
perfect accuracy are excluded, the error rates rise to 1.1%,
9.9%, and 12.4%, respectively, v2(2) = 84.64, p$ .0005.2

Exp. 2A shows that participants make systematic errors
in classifying the parity of digits even without time-pres-
sure, failing to apply uniformly the definition they are fully
able to articulate.3 A primary function of a concept is to
allow for the discrimination of category members and
nonmembers. Although it may be possible to brush off

differences in reaction times as being somehow peripheral
of ‘‘true’’ categorization (Armstrong et al., 1983; Gleitman
et al., 2012), it is difficult to dismiss the present findings
with the same argument.

4. Experiment 2B. Parity judgments of spelled-out
numerals

One possibility is that the errors in Exp. 2A stemmed
from participants occasionally responding to the wrong di-
git (a possibility further tested in Exps. 3A–3C). If true, then
better performance might be expected if the numbers are
spelled out because, with the exception of numbers divis-
ible by 10 and the ‘teens’, the English number system spells
out the last digit—the only digit critical for making a parity
judgment—in its entirety, marking it off in a highly salient
way. Thus, if the error patterns in Exp. 2A stemmed from
digit selection errors, they should be considerably reduced
when numbers are spelled out.

4.1. Participants and procedure

One hundred sixteen participants were recruited.
Excluding participants using the criteria listed in Exp. 2A
left a final sample of 100. The procedure was identical to
Experiment 2A except that the numbers were now spelled
out, i.e., ‘‘Two-hundred and five’’ instead of 205.

4.2. Results and discussion

Results were remarkably similar to Exp. 2A with no reli-
able differences or interactions. Thirty-one percent of par-
ticipants made errors and these errors were made
disproportionately for numerals with opposite-parity dig-
its, z = 5.106, p$ .0005 (logistic regression including the
same predictors, as in Exp. 2A). As before, education and
country of origin were not predictive of performance and
did not enter into reliable interactions, z < 1.

Because the exact same numerals were used in Experi-
ments 2A and 2B, it is possible to compare the error rates
for the individual numerals (e.g., 350 vs. Three-hundred
fifty, 798 vs. Seven-hundred ninety-eight, etc.). Although

Fig. 2. Results of Exp. 2A. Points represent (jittered) means; lines represent linear fits to performance of individual subjects.

2 Perfect accuracy of some participants combined with systematic errors
of others produce highly non-normal distributions. The effects reported
here replicate under a variety of tests: Logistic regression using raw
responses, Chi-squared analysis of numbers of errors, and logistic model
comparisons using maximum likelihood (Bates & Maechler, 2012). In fact,
reliable predictors remain reliable even after adding Gaussian noise to the
subject means until the distributions are normalized.

3 At the end of the questionnaire participants were also asked whether
they thought that some odd numbers were ‘‘more odd than others’’
(Armstrong et al., 1983); 26% of our participants concurred. These
individuals had significantly lower accuracy (p = .009), but the performance
of both concurrers and deniers was similarly affected by the number of
opposite-parity digits, cf. Exp. 4.
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#OPD predicted errors to similar extent in both Experi-
ments 2A and 2B (coefficients #.52 vs. #.48), the error
rates for the individual numerals in the two studies were
only moderately correlated, r = .48. Consider the number
350. When displayed in Arabic numerals, the error rate
was 3.3%. When it was spelled out, the errors increased
to 11.5%, F(1,291) = 11.57, p = .001. One speculation is that
the psychological oddness of ‘‘Three-hundred fifty’’ stems
from the use of 50 as a midpoint (e.g., half of a century, half
of a dollar). When written using Arabic notation, the 0 at
the end may help override the apparent oddness of the nu-
meric representation activated by the word ‘‘fifty.’’ The role
of notation has been discussed at length in the past, e.g., in
McCloskey’s Triple Code model (Dehaene, Bossini, & Gir-
aux, 1993 for discussion). The present results are consis-
tent with a model in which numerical concepts, as
activated by different cues (e.g., ‘‘three-hundred fifty’’ vs.
‘‘350’’) are, however subtly, different. Such a distinction is
not sensible if concepts have fixed cores (Armstrong
et al., 1983; Machery, 2009), but entirely consistent with
a view in which conceptual representations are viewed
as the in-context activation patterns with no dividing lines
between core and periphery (Casasanto & Lupyan, in press;
Elman, 2009; Lupyan & Thompson-Schill, 2012).

Experiment 2B replicates and extends the finding of
Exp. 2A: when judging numerical parity of spelled out
numerals, people are overwhelmingly more likely to make
errors for numbers with opposite parity digits.

5. Experiments 3A–3C. Are parity-judgment errors due
to failures of perceptual analysis?

One explanation for the error patterns observed in Exps.
1–2 is that participants represent some numbers as being
truly odder than others. On this account, contrary to the
arguments of Armstrong et al. (1983), and Gleitman et al.
(2012), membership in formally defined categories—as
represented by the human brain—is always a matter of de-
gree. Giving participants additional time allows the repre-
sentation to settle into a more binary state, but even at the

limit, many participants continue to represent some odd
numbers as odder than others and these differences man-
ifest as differences in explicit classification tasks. However,
an alternative that needs to be ruled out is that people’s er-
rors arise from failures of perceptual analysis. Perhaps the
parity-classification algorithm is actually free of systematic
errors, but the input to it is sometimes faulty. If one as-
sumes that people judge parity by first analytically decom-
posing the numeral and then applying a context-free
algorithm to the last digit then a failure in the decomposi-
tion routine would lead to an increase in incorrect re-
sponses with increasing #OPD, e.g., a number like 798
yields 2 opportunities for feeding the wrong-parity digit
into the algorithm whereas inputting any digit of 400
would lead to the same answer. This possibility is system-
atically tested by Experiments 3A–3C.

In Experiment 3A, participants completed a timed par-
ity-classification task, as in Exp. 1, followed by a flanker
congruity task that required perceptual analysis and
decomposition similar to the parity-judgment task (Erik-
sen, 1995; Miller, 1991), but did not require placing stimuli
into formal categories. By correlating various aspects of
participants’ performance on the parity-classification task
with their performance on the flanker task, it is possible
to test the degree to which perceptual selection failures
predict the effect of #OPD.

As shown by Exps. 2A–2B, #OPD continue to affect per-
formance on untimed parity-classification tasks. Exp. 3B
seeks to replicate this, and to correlate it with an untimed
version of a flanker task. If the errors in judging the parity
of 798 stem from feeding the wrong digit into the parity-
classification algorithm, then such errors should correlate
with errors on an untimed flanker task requiring partici-
pants to report the color of the last digit while ignoring
colors of other digits.

Experiment 3C provides a control to Exp. 3B by using
the very same color-coded numerals as Exp. 3B, but now
asking people to report parity rather than color. This exper-
iment also asks people for their classifications strategies to
determine if the strategy-type predicted performance.

Fig. 3. Results of Exp. 2A. Proportion or errors for each numeral is shown, ordered by accuracy. The box contains the mean ±1 SE. The error bars include the
95% binomial CI. Colors represent the number of opposite-parity digits for the numeral. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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5.1. Experiment 3A: Participants and procedure

Twenty-five undergraduate students participated for
credit. Each person completed a flanker congruity task fol-
lowed by the parity-classification task described in Exp. 1.
Each trial began with a fixation cross (700–900 ms) followed
by a target and flanker display containing a total of 7 shapes.
The targets, always centrally located, were small triangles
that faced left ðJÞ or right ðIÞ. On valid trials, the display
contained the target flanked by 3 triangles on each side (7
triangles in total). On any one trial, the flankers all faced
the same direction. On invalid trials, the target faced oppo-
site the flankers. On neutral trials, the flankers faced upward
(N). Because ‘up’ is not a possible response, upward facing
flankers are predicted to interfere minimally with respond-
ing to the direction of the target. The trials were evenly split
into the three trial-types (valid, invalid, and neutral). The tri-
als were also evenly split between three delay conditions:
simultaneous presentation (standard flanker display), and
flanker-first presentations in which the target was pre-
sented 150 ms or 500 ms after the flankers. A longer flan-
ker-to-target delay provides additional time in which to
selectively attend to the central location in which the target
will appear while also inhibiting the representations of the
irrelevant flankers and thus should lead to smaller conflict
scores. This factor was introduced to explore hypotheses
not central to the present paper and will not be discussed
in detail. Each participant completed 270 trials.

5.2. Results and discussion of Exp. 3A

5.2.1. Flanker congruity effect
The RT analysis excluded errors trials (2.4%) and trials

with RTs were over 1200 ms (0.2%). Overall RTs were
472 ms and accuracy was 97.3%. Not surprisingly, trial-
type (neutral, valid, invalid) was a reliable predictor of
both RTs, F(2,48) = 54.39, p < .0001 and accuracy,
F(2,48) = 19.49, p < .0001. People showed an overall RT
cost on invalid trials, Minvalid = 504 ms; Mneutral = 464 ms,
t(24) = 8.13, p < .00005, and an overall advantage for valid
relative to neutral trials, Mvalid = 450 ms; t(24) = 3.27,
p = .003. Accuracy analyses revealed a reliable cost on inva-
lid trials but no advantage for valid trials due to ceiling ef-
fects. Due to restricted range of the accuracy analysis, I will
focus on RTs, as is conventional for the flanker congruity
task.

A linear mixed-effect model analysis that included de-
lay as a covariate showed that the invalidity-cost signifi-
cantly decreased with longer flanker-to-target onset
delays, t = #6.10, p < .0005, and the validity advantage in-
creased, t = 5.68, p < .0005 (indeed, the validity advantage
was only present for the trials on which the flankers ap-
peared before the target).

5.2.2. Parity judgments
Overall RTs were 592 ms. and accuracy was 91.5%. This

experiment replicated the effects described in Exp. 1, as re-
vealed by a linear-mixed-effect model analysis when pre-
dicting RTs and mixed-effect logistic analysis when
predicting errors (computed on dichotomous 1/0 values).
Controlling for number of digits, increases in #OPD reliably

predicted higher RTs, t = 6.19, p < .00005 and lower accu-
racy, z = #3.48, p = .0005. Controlling for #OPD, classifying
numerals with more digits took longer, t = 3.21, p = .001,
and was marginally associated with higher accuracy,
z = 1.78, p = .07, though there was no evidence of a by-sub-
ject speed-accuracy tradeoff, p’s > .2. A direct comparison
of the effects of #OPD and digit-number of the present
experiment to Experiment 1 showed that the effects of
#OPD on RTs was somewhat larger in Exp. 1 than in the
present experiment as revealed by a marginally significant
experiment-by-#OPD interaction, t = 1.95, p = .05. A model
comparison between a base model predicting RTs from
#OPD and digit-number only, to a model including the
experiment (Exp. 1 vs. Exp. 3A) and the #OPD-by-experi-
ment interaction showed that the more complex model
was not significantly better, v2(2) = 3.91, p = .15. In short,
the present study successfully replicated Exp. 1.

5.2.3. Relationship between the flanker congruity effect and
parity-classification

If the effect of #OPD on parity-classification stems so-
lely from selection failures, then controlling for measures
of flanker performance that are theoretically linked to such
selection difficulties—namely, the difference between neu-
tral and incongruent trials—should account for much of the
observed difficulties people have with classifying the par-
ity of numbers like 798 (i.e., the predictive power of
#OPD). If, on the other hand, the detrimental effect of
increasing #OPD is not purely perceptual, then the predic-
tive power of #OPDs should remain once flanker perfor-
mance is partialed out. If this were the sole prediction,
then support for the hypothesis that effect of #OPD is not
due to perceptual-selection failures would require arguing
from a null result. However, recall, that in addition to peo-
ple performing more poorly as a function of #OPD, people
were also slower to classify numbers having more digits.
That is, controlling for #OPD, people were slower on 4-di-
git than 3-digit numbers, etc. This effect of number-length
may indeed be perceptual in origin insofar as it takes more
perceptual processing to isolate the last digit in a 4-digit
number than in a 2-digit number. If true, and assuming
that the flanker congruity effect measures, among other
things, people’s ability to perceptually isolate the target
in the presence of irrelevant distractors, then controlling
for flanker performance should eliminate the effect of di-
git-number on parity-classification performance.

To test these hypotheses, I compared a series linear-
mixed effect models in which parity RTs are predicted from
a progressively more complex set of variables. The base
model included number of digits, #OPD, and flanker per-
formance on the neutral trials. Both number of digits
(t = 3.08), and #OPD (t = 5.96) continued to predict perfor-
mance. Performance on the neutral trials did not, t < 1. The
invalidity-cost and validity-advantage were then added to
the model. These variables were not significant predictors
of performance, t’s < 1, did not improve the overall fit,
v2(2) < 1, and did not decrease the predictive power of
either number-of-digits or #OPD. I next added an interac-
tion between number of digits and the flanker-invalidity
cost. Adding this interaction marginally improved the
overall fit, v2(1) = 3.46, p = .06, but importantly, it entirely
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eliminated the predictive power of number-of-digits on
parity-judgment RTs (the t-value declined from 3.07 to
0.15). Repeating this comparison with the #OPD-by-inval-
idity-cost interaction showed that the inclusion of the
interaction did not improve the model fit, v2(1) = 1.58,
p > .2. The predictive power of #OPD was reduced some-
what; the t-value declined from 5.96 to 2.25, but remained
a significant predictor, p = .02. Adding additional interac-
tion terms involving the validity-advantage did not further
improve model fits.

To summarize: Numbers having more digits take longer
to be classified as odd or even and this effect is (margin-
ally) increased for people who show a greater flanker
invalidity cost. Including the invalidity-cost by digit-num-
ber interaction in the model completely eliminated the
number-of-digits effect in parity classification. In contrast,
the interaction between #OPD and the flanker-invalidity
cost was not reliable and the main effect of #OPD remained
a significant predictor controlling for flanker performance.
This pattern of results suggests that while longer response
times for classifying parity of numerals with more digits is
linked to perceptual selection performance, the same can-
not be said for poorer performance on numbers with oppo-
site-parity digits, like 798.

5.3. Experiment 3B. Participants and procedure

For Exp. 3B, 115 new participants from Mechanical Turk
were recruited. Seven were excluded based on the exclu-
sion criteria described in Exp. 2A. The procedure of Exp.
3B was identical to Exp. 2A except that in addition to the
original parity-judgment task, participants also completed
an untimed color-flanker task requiring perceptual classifi-
cation and selective attention, but not requiring placement
of stimuli into formally-defined categories. This task used
the original numbers used in Exp. 2A with each digit col-
ored red if even and blue if odd (Fig. 4). Instead of judging
their parity, participants were asked to select all the
numbers that ended on a red-colored digit and then, on a
separate screen, to select all the numbers ending on a
blue-colored digit (order randomized).

5.4. Results and discussion of Exp. 3B

Most participants demonstrated perfect performance:
85% on the color flanker task and 84% on the parity-judg-
ment task. There were no overall differences between the
overall error rates on the two tasks, F < 1 (a logistic-

regression analysis and an analysis excluding all partici-
pants with perfect performance also failed to find any dif-
ferences in overall accuracy between the two conditions).
If classification errors of numbers like 798 stemmed from
focusing on the wrong (i.e., non-final) digit, then one
would expect that the competition between blue and red
colors would produce a similar error pattern, i.e., if partic-
ipants are more likely to say ‘‘odd’’ for 798 because they
mistakenly report the parity of the 7 or 9, then when asked
to report the color of the final digit (red), they should on
occasion report the wrong color (blue) due to selecting
the wrong digit.

Although #OPD predicted performance in the parity-
judgment task, z = #2.35, p = 0.02 (replicating the finding
from the previous studies), #OPD did not predict perfor-
mance in the color-flanker task, z = .57, p = .57. This differ-
ence in predictiveness of #OPD for the two questions
resulted in a reliable interaction between task-type and
number-of-opposite parity digits/colors, as shown by a
comparison of logistic regression models: v2(1) = 9.03,
p = .003 (i.e., adding the interaction factor significantly im-
proved the model fit). Moreover, although the item-wise
error-rates in the present parity-judgment task were
significantly correlated with those in Exp. 2A, r = .59,
p = .01, item-wise error rates for strictly perceptual
judgments of the color of the final digit did not correlate
with the parity-judgment task in Exp. 2A, r = .16, p > .5,
nor with the parity-judgment task performed by the very
same participants, r = #.15, p > .5.4 Examining subject-wise
correlations also failed to find a correlation between the
error rates on the two tasks, r = #.07, p > .4. This
independence of errors in the color-flanker and parity-judg-
ment task is unexpected if both error types stem from the
same source.

Exp. 3B replicated the pattern of results observed in
Exps. 2A–2B while testing the hypothesis that such
parity-classification errors observed in Exps. 1–2 stemmed
from failures in perceptual selection.5 The results showed
that performance on an untimed ‘‘color flanker’’ task was
not dependent on the number of distracting items (differ-
ent-color digits) demonstrating that in this paradigm, selec-
tively focusing on the last number while ignoring distracting
numerals does not pose a challenge. Unlike the errors made
in the parity-judgment task, which are systematic, the errors
on the color-flanker task appear to be random.

6. Experiment 3C. Comparison of simple selection and
formal classification

It is possible that reporting the color of the last digit, as
required by Exp. 3B, calls on perceptual selection of a dif-
ferent sort than that required to isolate the last digit in

Fig. 4. Sample trials of the color-flanker task of Exp. 3B. Exp. 3C used
identical displays but asked participants to judge parity as in Exp. 2A.

4 Using Spearman correlations produced an identical pattern of results.
5 It is worth noting that insofar as perceptual selection errors are more

likely for obliquely oriented numerals in Exp. 1, the perceptual selection
account predicts that the effect of #OPD should be greater when numbers
are obliquely oriented. Although obliquely oriented numerals indeed
yielded longer RTs, the effect of #OPD on performance was non-reliably
smaller in magnitude for oblique numerals, not larger, both in Exp. 1 and
Exp. 3A.
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the service of parity classification. Exp. 3C was isomorphic
to Exp. 3B: participants saw the very same displays, but in-
stead of being asked to select all the numerals that ended
on e.g., a red number, people were asked to select all the
odd and all the even numbers, as before. Note that the
two experiments required making all the same choices.
In Exp. 3C task, as in Exp. 3B, people could simply click
on all the numbers that ended with a digit of a particular
color. Finding a continued effect of #OPD would provide
further evidence that despite being perfectly able to attend
to the last digit in the presence of distractors, for many
people the allure of similarity-based classification is too
strong to shut off.

6.1. Participants and procedure

One-hundred four new participants from Mechanical
Turk were recruited. Six were excluded based on the exclu-
sion criteria described in Exp. 2A. The procedure was iden-
tical to Exp. 2A except the digits of the numbers were
color-coded as shown in Fig. 4. Two people who both know
what it means to be odd or even may nevertheless use dif-
ferent strategies for performing the classification. Follow-
ing the parity-judgment task participants were asked if
they relied on the colors of the digits to respond and also
asked, ‘‘How do you tell if a number is odd or even?’’ The
answers were independently coded by 3 raters on correct-
ness, completeness, and strategy. Strategies were coded as
mentioning something about the last digit, mentioning
divisibility by 2 with/without remainder, or both. The
three raters showed fairly high reliability (Cronbach a for
correctness was .89 and for completeness was .87). Dis-
agreements were settled through consultation among the
raters.

6.2. Results and discussion of Exp. 3C

Most participants (79%) had perfect performance. As in
the previous studies, #OPD was a significant predictor,
z = #6.12, p$ .0001 (as before, education level did not
predict error rates, z < 1). A direct comparison between
the present study and Exp. 2A failed to find a difference
in overall accuracy, z < 1, nor an experiment-by-#OPD
interaction, z = #.04, p > .9. However, the interaction be-
tween experiment (3B, 3C) and effect of #OPD was highly
reliable, z = #3.59, p < .001. That is, the #OPD coefficient
was reliably different between Exps. 3B and 3C. When peo-
ple’s goal was to report the color of the last digit, conflict-
ing colors did not interfere. When the goal was to report
the parity of the number, opposite parity (and opposite
color) digits did interfere.

At the group level, Exp. 3C replicates once again the ba-
sic effect of #OPD. I next examined performance as a func-
tion of people’s responses to the question of how to
distinguish odd and even numbers. Participants with lower
correctness had lower overall performance, z = 2.59,
p = .009 (logistic regression), although this relationship
was driven entirely by 3 individuals who had clearly incor-
rect definitions (and overall accuracy of only 74%). When
they were excluded, correctness of stated strategy did

not predict performance, z < 1. The completeness measure
also did not predict performance, z < 1. Neither correctness
nor completeness interacted with #OPD, z < 1. For the 52
participants whose strategies were judged perfectly
correct and complete, #OPD continued to predict perfor-
mance, z = #3.73, p < .001. Participants appeared to largely
ignore the color of the digits. Most (87%) responded that
they did not use the color of the digits to respond. The re-
sponse to this question did not predict overall performance
nor effect of #OPD, z’s < 1.

Next, I examined performance as a function of people’s
expressed strategy. Of 98 participants, 44 mentioned the
last digit (e.g., ‘‘the number ending with 2,4,6,8,0 are even
numbers, others are odd’’), 38 mentioned division (‘‘Even
numbers can be divided evenly into groups of two, Odd
numbers cannot be divided evenly’’), 8 mentioned
both, and the remaining 8 provided strategies with
insufficient details to be coded (e.g., ‘‘odd numbers are in
this order 1, 3, 5, 7, 9, etc., even numbers are in this order
2, 4, 6, 8, 10, etc.’’, ‘‘the first number(1) is odd, the
second number(2) is even and the numbers alternate from
there’’).

Performance of the 82 people whose stated strategies
mentioned either last digits or division was analyzed with
logistic regression. Strategy was not a reliable predictor,
z < 1 and #OPD continued to predict performance,
z < #4.10, p < .0001. Although the interaction between
strategy and #OPD was not reliable, z = 1.43, p = .15, ana-
lyzing performance by strategy showed that #OPD pre-
dicted performance for people who mentioned using
division, z < #4.22, p < .0001, but not those who mentioned
using the last digit, z = #.30, p > .6. Interestingly, people
who mentioned division tended to have descriptions that
were more formally correct, F(1,80) = 4.96, p = .029 and
complete, F(1,80) = 4.53, p = .036, than people who men-
tioned relying on the last digit. Although it is difficult to
draw strong conclusions from this last finding, it is inter-
esting that people who were more formally correct in
describing how to tell if a number is even or odd were
more prone to mis-classify numbers having opposite-par-
ity digits, while people who relied on a convenient heuris-
tic (if the last digit is 1, 3, 5, etc.) were actually less likely to
make a mistake.

6.3. Summary of Experiments 3A–3C

Combined, the results of Exps. 3A–3C are difficult to
square with the claim that the only reason people mis-
classify numbers like 798 is that they accidentally focus
their attention on the wrong digit. In Exp. 3A, performance
on a task designed (in part) to measure perceptual selec-
tion predicted the effect of numeral length (e.g., 2 vs. 4 di-
git numbers) on parity RTs—an effect that is clearly related
to the speed with which one can select the last digit—but
did not at all account for the slowing of RTs for numbers
with opposite-parity digits. Exp. 3B showed that flanker-
type incongruity effects go away when time is not a factor.
Exp. 3C showed that in the same untimed conditions, with
all the same displays, signatures of graded representations
of parity do not go away.
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7. Experiment 4. Performance quirks or meaningful
heuristics?

‘‘Surely those students [the participants of Armstrong
et al., 1983] would not have made it into the prestigious
University of Pennsylvania, if they really thought that
numbers could be more or less odd’’ (Pinker, 2000, p.
275).

The studies I have presented thus far show that mem-
bership in formal categories shows signatures of being
graded, even when no time pressure is imposed. Do the
higher error rates in classifying 798 mean that people
actually think that 400 is more even than 798? Here, I
ask participants this very question and then correlate
people’s responses with their performance on the parity
classification task.

7.1. Participants and procedure

Seventy-eight participants were recruited from Amazon
Mechanical Turk. Excluding participants using the same
criteria as used in Exp. 2A left a final sample of 75. The pro-
cedure was identical to Experiment 2A except participants
were asked two multiple choice questions to assess their
belief about the gradual membership in odd and even
numbers:

(a) True or false: some odd numbers are more odd than
others? (True, False).

(b) Is 400 more even than 798? (Yes, No, Unsure).

The questions were presented either before or after the
odd/even classification task. If participants answered True
or Yes, they were asked to elaborate and provide examples
of odd numbers that were odder than others (a) and to ex-
plain what made 400 a more even number than 798 (b).
The goal of including these questions was threefold: First,
I sought to assess, albeit very coarsely, the degree to which
participants thought of parity as existing on a continuum.
Second, asking about the relative even-ness of two specific
number offers an additional test of the hypothesis that
people’s mis-classifications are due to inattention or per-
ceptual failures (see below for further discussion). Third,
I sought to check whether participants who thought e.g.,
that 400 was more even than 798 were more affected by
#OPD overall.

7.2. Results and discussion

The main results were very similar to Exps. 2A–2B. The
majority (73%) had perfect performance, but #OPD once
again reliable predictor of the likelihood of choosing a
numeral, controlling for the prompt (odd, even) and the ac-
tual parity of the number, z = #3.72, p = .0002. Self-re-
ported education was again not a reliable predictor of
performance, z < 1, p > .7.

Of the 75 participants, 23 (31%) thought that some odd
numbers were odder than others and 21 (28%) reported
that 400 was more even than 798; 5 (7%) reported that
they were not sure. These 5 participants were removed

from the analyses that follow. I next examined the rela-
tionship in the responses to the two questions. Of the 21
people who thought that 400 was more even than 798,
13 (62%) thought that some odd numbers were odder than
others. Of the 49 people who thought that 400 was not
more even than 798, 40 (82%) responded ‘False’ to the
proposition that some odd numbers were odder than oth-
ers. Altogether, 71% of people responded consistently to
the two questions, Fisher’s exact test, p < .0005.

I next examined people’s performance on the parity
classification task as a function of how they responded to
questions (a) and (b). People who thought that some odd
numbers were odder than others had lower overall accu-
racy in judging parity (95% vs. 99%), z = 1.98, p < .05. People
who thought that 400 was more even than 798 had numer-
ically lower accuracy on the parity task, but this difference
was not statistically reliable, z = 1.53, p = .13 (given the
correlation between the answers to the two questions,
they were not expected to be simultaneously predictive
of performance).

Were people who claimed that 400 was more even than
798 more likely to classify 798 as odd or fail to include is
among the evens? Of the 49 respondents who thought that
400 and 798 were equally even, only 1 person (2%) made
an error mis-classifying 798. Of the 23 respondents who
thought 400 was more even than 798, 4 (17%) made mis-
classification errors, a reliable difference by Fisher’s exact
test, p = .035.

Finally, I examined whether #OPD interacted with peo-
ple’s responses to the 2 typicality questions. This analysis
answered the question of whether the performance of
people who e.g., thought that 400 was more even than
798 was more affected by #OPD. To test this hypothesis I
compared a series of progressively more complex mixed-
effects models. A comparison of the base model that in-
cluded #OPD to a model that included the interaction terms
between #OPD and responses to the two questions above
showed that the second model accounted was a better pre-
dictor, v2(2) = 7.96, p = .02. Further examination showed
that this effect was driven primarily by the interaction be-
tween #OPD and the 400-vs-798 question (question b
above). The accuracy of participants who thought that
400 was more even than 798 was more adversely affected
by #OPD than the accuracy of participants who thought
that 400 and 798 were equally even, z = 2.53, p = .01. Put
another way: For participants who thought 400 was more
even than 798, the difference in classification accuracy be-
tween #OPD = 0 and #OPD = 2 was 9.5%. For those who
thought that 400 and 798 were equally even, the difference
was only 2%, F(1,69) = 5.64, p = .02.

Recall that in addition to providing discrete responses,
participants who indicated that they thought that some
odd numbers were odder than others and/or that 400
was a better even number than 798 were asked to explain
their answer. Here are twelve sample responses:

(1) ‘‘400 is easily divisible by 2’’.
(2) ‘‘It’s easier to identify [400] as even than 798.
(3) ‘‘By odd numbers being more odd than others, I

mean that some odd numbers are harder to identify
quickly when compared to other, less odd numbers.’’

10 G. Lupyan / Cognition xxx (2013) xxx–xxx

Please cite this article in press as: Lupyan, G. The difficulties of executing simple algorithms: Why brains make mistakes computers don’t.
Cognition (2013), http://dx.doi.org/10.1016/j.cognition.2013.08.015

http://dx.doi.org/10.1016/j.cognition.2013.08.015


(4) Some numbers like 7 and 3 only have two factors,
themselves and 1. Some others like 15 have more
than just that.

(5) A three digit number with all odd numbers like 137
seems more odd to me.

(6) ‘‘because 4 0 0 is even’’
(7) It is an even hundreds – no odd tens like in 798.
(8) I think that a number ending in 5 is less odd than

numbers ending in 1, 3, 7, or 9. 389 is more odd than
455.

(9) It seems to be more even because of the double zero,
whereas 98 just doesn’t seem a even.

(10) ‘‘557 is a right example for odd numbers that are
more odd than others.’’

(11) Two 0s and an even number is better than two odd
numbers and one even number.

(12) Both are even, as in divisible by 2. But 400 is more
even because it is a clean 00 at the end. More even
because it’s divisible by 10.

As these responses make clear, participants’ thinking
about parity is informed by a number of heuristics. One
of these appears to be ease of categorization (i.e., fluency).
Exemplars that are easier to divide by 2 appear to many
people as more even. Although it may seem bizarre to
claim that some even numbers are more even than others,
consider one use of parity in the real world: dividing a
group into two teams. As long as the total number is even,
the two teams will have equal numbers. Yet does it not
seem that two teams of 10 are a cleaner, better, more even
split than 2 teams of 9? If it does, you just might agree with
the statement that 20 is a better even number than 18. One
might protest that this is a perversion of the real, concept
of parity, but that is precisely the point—parity as
represented by people, at least some people, does not fully
abstract from real world considerations.6

Experiment 4 replicates and extends the findings of the
studies above. It is shown that, contrary to Armstrong et al.
(1983) and Pinker’s (2000), a significant number of
participants in fact endorse and justify statements regard-
ing relative oddness and even-ness of numbers, and,
importantly, these responses were predictive of perfor-
mance on the parity classification task. People who agreed
with statements about the gradedness of parity were more
affected by #OPD when making parity judgments. These
effects are themselves graded in nature. Someone who says
that 400 is a better even number than 798 does not (in all
likelihood) have the ‘‘wrong’’ definition of parity. If they
were simply misinformed, their performance would be
far worse than what was actually observed. Rather, as
was true of the participants in the previous studies, their
error patterns were affected by ‘‘surface’’ properties to a
greater extent, but were still graded and probabilistic.

8. Experiment 5A: When is a triangle not a triangle?

The results of Exps. 1–4 show that participants make
systematic errors when judging numerical parity. As
shown by Exps. 3A–3C these errors cannot be easily attrib-
uted to failures of perceptual selection. An even stronger
case for the claim that classification into formal categories
is inherently input-dependent can be made by showing
that participants make systematic classification errors
even when correct classification does not require decom-
posing the input into parts like last digit/other digits. In
Exps. 5A–5D participants are asked to classify 2-dimen-
sional shapes as triangles. These experiments ask whether
triangles that are generally classified as atypical/non-
canonical are actually less likely to be classified as triangles
altogether. These results cannot be attributed to differ-
ences in decomposition/perceptual selection because
whatever decomposition is required for classifying a shape
as a triangle, is required equally for all types of triangles—
isosceles, scalene, etc. If classification errors are due to per-
ceptual selection, then they should occur equally often for
all triangle types. In contrast, if triangle classification is
invariably affected by triangle typicality, then some trian-
gles—the more typical or canonical ones—ought to be clas-
sified as triangles at higher rates than those that are less
typical/canonical.

8.1. Participants, materials and procedure

One-hundred four participants were recruited from
Mechanical Turk; 8 were excluded based on criteria analo-
gous to Exp. 2A. Participants were shown 10 triangles com-
prising 4 sub-types (equilateral, isosceles, right, and
scalene; Fig. 5) and asked to ‘‘select all triangles’’ by click-
ing checkboxes next to each shape. A separate group of 50
participants (1 excluded) were asked to rank the typicality
of each triangle on a 1–4 scale (very atypical to very typi-
cal). All participants saw the same shapes shown on a sin-
gle webpage in random order. There was no time pressure.

8.2. Results and discussion

Although 77% of participants performed perfectly in this
untimed test, errors were strongly modulated by triangle
sub-type, F(3,285) = 13.11, p < .0005 (Fig. 5A and B). A
model comparison showed that adding the sub-type pre-
dictor substantially improved the fit, v2(3) = 102.8,
p$ .00001. Logistic regression analyses revealed that
equilateral triangles were classified more accurately than
isosceles, followed by right, and scalene. All differences in
error rates except between right and scalene triangles
were highly reliable, p’s < .001 (see also Ward, 2004 for
an account of similar errors in interviews with pre-service
teachers). Education did not predict accuracy or interact
with the effect of sub-type.

Participants overwhelmingly rated some triangles as
more typical than others, F(9,432) = 37.60, p$ .0001:
equilateral > isosceles > right > scalene (all contrasts reli-
able). Canonically oriented triangles were significantly
more typical than obliquely oriented triangles (with the

6 In addition to the parity of a number, one can also define the 2-adic
order also referred to as valuation of even numbers. Numbers which can be
divided by 2 only once (e.g., 798) are called singly-even, and numbers that
can be divided by 2 multiple times (e.g., 400) are called doubly-even.
Valuation indeed predicted error rates in Exp. 1 and 3A. However, when
controlling for #OPD, the predictive power of valuation disappeared, p’s > .5
suggesting that it is not simply the case that participants ‘‘definition’’ of
parity explicitly includes valuation.
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exception of ‘‘upside-down’’ triangles: triangles 2 and 5 de-
picted in Fig. 5 were as typical as upright triangles). As
shown in Fig. 5C, typicality accounted for almost the en-
tirety of the error pattern, r = #.97, p < .0005. The triangles
that participants in one group judged to be atypical were
the same ones that participants in another group (occa-
sionally) failed to select as ‘‘triangles.’’

These results provide additional evidence of the inherent
input sensitivity of the human algorithms that compute
membership in formal categories. Unlike judging numerical
parity which possibly requires analytic decomposition of
the number into its digits, no such analytic decomposition
is necessary for classifying shapes as triangles. Any errors
stemming from perceptual mis-analysis would presumably
impact all triangles equally, but participants were !2.5
times less likely to classify a scalene triangle as a triangle
compared to an isosceles one.

Because all the shapes were triangles, perfect perfor-
mance required participants to select every option, giving
this task flavor similar to a multiple choice exam on which
the correct answer is ‘c’ for suspiciously many questions in
a row. It might therefore be objected that the participants’
failure to choose all the triangles was pragmatic in nature.
This concern is addressed by the next study. To foreshadow
the results, the error patterns are unchanged by including
non-triangles among the choices.

9. Experiment 5B: Are classification errors in Exp. 5A
due to odd question pragmatics?

Experiment 5A showed that many participants system-
atically failed to include non-canonical triangles as

triangles. Correct performance required participants to
choose all the options. A possibility remains that some
individuals understood the question to mean ‘‘choose all
the typical triangles.’’ Although such a (mis) interpretation
should not be logically possible on the classical account, it
is nevertheless an alternative to my claim that some
participants think that, e.g., equilateral triangles are ‘‘true’’
triangles, while scalene triangles are not due to their devi-
ation from a ‘‘canonical’’ triangle. To rule out the possibility
that the results of Exp. 5A were due to question pragmat-
ics, I conducted a replication with several non-triangles
included among the choices.

9.1. Participants, materials and procedure

Eighty-three participants were recruited from Mechan-
ical Turk; 3 were excluded, as per criteria of Exp. 2A. As in
Exp. 5A, participants were asked to click on all the shapes
that were triangles. The one differences was that that two
additional shapes were now included: a square positioned
at 45" off horizontal and an obliquely-presented rectangle.

9.2. Results and discussion

None of the participants selected the square or rectan-
gle and about 78% classified all the remaining shapes as tri-
angles. Once again, which triangles were omitted was
strongly dependent on the type of triangle (equilateral,
isosceles, right, scalene), F(3,237) = 8.30, p < .0005. A mod-
el comparison showed that adding the sub-type predictor
substantially improved the fit v2(3) = 63.82, p$ .00001.
Education was not a reliable predictor of overall
performance, z < 1 and did not reliably interact with the

Fig. 5. Results of Exp. 5A. Panel A shows mean errors for each triangle type (±1 SE). Panel B shows the proportion of failures to select each given triangle,
with the shapes ordered by mean accuracy. Colors indicate type of triangle. Each box contains the mean and ±1 SE. Errors bars contain the 95% binomial CI.
Panel C shows the relationship between error rates and typicality ratings, provided by a separate group of participants. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

12 G. Lupyan / Cognition xxx (2013) xxx–xxx

Please cite this article in press as: Lupyan, G. The difficulties of executing simple algorithms: Why brains make mistakes computers don’t.
Cognition (2013), http://dx.doi.org/10.1016/j.cognition.2013.08.015

http://dx.doi.org/10.1016/j.cognition.2013.08.015


classification profile, p > .15; however people who reported
being only high school graduates were marginally less
likely to select right triangles, z = 1.84, p = .07 and scalene
triangles, z = #1.88, p = .06.

There were no differences in overall accuracy between
Experiments 5A and 5B, F < 1 and the experiment " trian-
gle sub-type interaction was not significant, F < 1. As in
Exp. 5A, the likelihood of classifying a particular triangles
as a triangle was almost entirely predicted by the typicality
measure collected in Exp. 5A, r = #.94, p < .0005.

This study tested the possibility that the reason that
participants failed to select all the triangles in Exp. 5A
was due to question pragmatics. One may wonder how
fragile a putative rule-based categorization process must
be, to be so easily confounded by such pragmatic consider-
ations, but it is nevertheless conceivable that being faced
with a question to which the correct answer is to choose
all the options leads participants re-interpret the original
question. The present study shows that including non-tri-
angles among the choices with a new group of participants
led to virtually identical results. Indeed, the correlation be-
tween error-rates for the 10 triangles between Exps. 5A
and 5B was .96, p < .0005. The similarity of the results be-
tween Exps. 5A and 5B (see also 5C) speak against the pos-
sibility that the results of Exp. 5A were in some way
artifacts of question pragmatics.

10. Experiment 5C. Are individuals consistent in their
classification performance?

It is admittedly surprising that a sizeable minority of
educated adults fail to classify non-canonical triangles as
triangles. This experiment tests the stability of these classi-
fication decisions by asking people to classify the triangles
twice and to justify their choices. If people’s classification
decisions vary widely from one minute to the next, or if
the justifications include such explanations as ‘‘the lines
did not look straight’’ or ‘‘I thought I did choose these,’’ then
there is reason to doubt the validity of the results.

10.1. Participants, materials and procedure

Eighty-seven participants via Amazon Mechanical Turk
completed the task; 2 were excluded for selecting one of
the rectangle shapes. The procedure was identical to Exp.
5B except that immediately after making their selections,
anyone who did not choose all the triangles was shown
the omitted triangles and asked ‘‘Why did you not select
this shape/these shapes?’’ All participants were also asked
to select the triangles a second time with the only differ-
ence between the two questions being the order in which
the shapes were arranged on the screen.

10.2. Results and discussion

Overall, 85% of participants correctly selected all the tri-
angles. Once again, which triangles were omitted was
strongly dependent on the type of triangle (equilateral, isos-
celes, right, scalene), F(3,252) = 9.76, p < .0005. A model
comparison showed that adding the sub-type predictor sub-

stantially improved the fitv2(3) = 122.08, p$ .0001. Educa-
tion was not a reliable predictor of overall performance and
did not reliably interact with the classification profile, z < 1.

A comparison of errors for the first and second question
showed that performance was higher overall the second
time they were asked to classify the triangles, (M = 93%
vs. M = 95%). This difference was reliable as shown by com-
parison of logistic models, v2(1) = 7.77, p = .005. But
importantly, the categorization profile was nearly identical
for the two questions. The by-item correlation between the
two questions was .97 and by-subject correlation was .84.
The responses were also once again strongly predicted by
typicality. Correlations between typicality and errors for
the 10 different triangles #.92 for the first classification
question and again #.92 for the second question. As sug-
gested by these extremely high correlations, question
number (first or second) did not reliably interact with tri-
angle sub-type, z < 1.

Finally, it is useful to examine the types of responses
people gave when asked to explain why they did not
choose certain triangles. Here are some representative
justifications:

(1) They aren’t true triangles.
(2) Because it is not triangle shaped.
(3) Because a triangle has three equal sides.
(4) Two sides are not equal.
(5) These are not triangles.

Only one person’s explanation referred to any sort of
(in)attentional factor. This person wrote ‘‘I meant to. I
guess my mouse malfunctioned’’ and proceeded to select
all the triangles the second time around. A more formal
analysis of the free responses would require a much larger
number of participants and is beyond the scope of the
present work. What the responses make clear, however,
is that failures to select all the triangles are not simple
oversights and reflect a consistent tendency of (some) par-
ticipants to mis-classify non-canonical triangles at a higher
rate. More generally, these results offer further support for
the claim that mental representations of formal categories
have a graded structure. If a critic wishes to argue that
these results also indicate failures of an identification proce-
dure as distinct from a putative core, they would need to
provide a coherent account of: (1) why, in an untimed cat-
egorization task, repeated twice, this core representation is
not being ‘‘triggered’’ by all triangles7 and (2) what is added
by positing a conceptual core.

7 One may wonder whether participants who persist in failing to select
non-canonical triangles simply have a different ‘‘non-standard’’ definition
of triangle, one that categorically excludes e.g., scalene triangles. It is
unclear how this account can be convincingly supported. When asked to
provide a definition of a triangle, virtually all participants respond with a
version of ‘‘a three-sided shape/polygon/figure’’ without mentioning addi-
tional properties. All the reported effects remained significant after
excluding participants whose justifications suggested a non-standard
definition. At the same time, it is clear that the definition of ‘‘triangle’’ is
itself context-sensitive. If it were not, the phrase ‘‘upside-down triangle’’
would be meaningless, yet it is not. Such context-dependence makes
judging whether someone has the ‘‘correct’’ definition a less than mean-
ingful enterprise.
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11. Experiment 5D. The consequences of graded
representations for making inferences

So far, I have shown that participants make systematic
errors in tasks requiring explicit classification of items into
formally-defined categories. However, categorization is not
an end in itself. A major function of categorization is to
promote inference (e.g., Markman & Ross, 2003). If we
know that property P is true of all members of category
C, then classifying an item as a member of C, allows us to
infer that it has P. Insofar as participants fail to classify cer-
tain ‘‘non-canonical’’ triangles as triangles, they may simi-
larly fail to extend properties that are mathematically true
of all triangles to these non-canonical triangles. Exp. 6
tested this hypothesis.

11.1. Participants, materials and procedure

Sixty-five participants were recruited from Mechanical
Turk. The procedure was almost identical to Experiment
5A, but instead of being asked to overtly classify the trian-
gles, people performed a category inference task. The
instructions informed them that ‘‘All triangles have angles
that add up to 180 degrees’’ and asked to ‘‘select the shapes
below that you think have angles adding up to 180 de-
grees.’’ The shapes were presented to participants in the
identical way as in Exp. 5A.

11.2. Results and discussion

Seventy-five percent of participants correctly selected
all the triangles as having angles that added to 180". Errors
were strongly modulated by triangle type, F(3,192) = 6.48,
p < .0005. A model comparison showed that adding the
sub-type predictor substantially improved the fit
v2(3) = 79.92, p$ .00001.

Once again, failure to choose individual triangles was
strongly predicted by their typicality, r = #.88, p = .001
(Fig. 6). The one notable difference from Exps. 5A–5B was
that the two right triangles were now selected the least of-
ten—surprising given their common use in textbooks to
illustrate geometric and trigonometric principles. Partici-
pants were additionally asked to explain why they failed
to select certain shapes. Here are some typical responses
from participants who omitted at least one shape:

1. ‘‘Well they didn’t seem to be quite perfect, I guess’’.
2. ‘‘Because they did not have even sides’’.
3. ‘‘They didn’t look like they added to 180 degrees’’.
4. ‘‘They didn’t look like they were 180 degrees’’.
5. ‘‘Cause one of them looked like it could have been more

than 180 degrees’’.

12. Experiment 6A. Oddness, triangleness and
grandmotherhood: individual differences and further
explorations

‘‘Prototypical grandmothers are women with gray hair,
they have wrinkled skin, they wear glasses, and so on.
Yet we all know that there are people who fail to exhibit

these characteristics who are grandmothers, and that
there are people who do exhibit these characteristics
who are not. Mrs. Doubtfire (the Robin Williams charac-
ter) may look like a grandmother, but Tina Turner really
is a grandmother (Margolis & Laurence, 2008, p. 196,
chap. 8).

The key claim being made across the 11 studies pre-
sented so far is that despite people’s explicit knowledge
of the rules of membership in formal categories like ODD

and TRIANGLE, all participants showed signatures of similar-
ity-based processing in speeded classification and a size-
able minority continued to show them in unspeeded
classification. This basic finding might be taken to mean
that people’s concepts come in two forms: one form has
fuzzy boundaries and results in prototype effects, while
the other has sharp boundaries with all-or-none member-
ship. Exactly this argument has been made on multiple
occasions for the concept GRANDMOTHER. As Margolis and Lau-
rence describe, there are ‘‘prototypical’’ grandmothers who
share certain characteristics, and then there are the true
grandmothers, who, by virtue of being women with at least
one grandchild, are all equally valid instances of the GRAND-

MOTHER category despite possibly lacking the ‘‘peripheral’’
grandmother features such as gray hair. For example, Pin-
ker writes, ‘‘Family resemblance categories are real, but so
are classical categories; they live side by side in people’s
minds, as two ways of construing the world’’ (Pinker,
2000, p. 275) and ‘‘People are not slaves to similarity. We
can be told [that] Tina Turner is a grandmother, overriding
our statistical experience of what [grandmothers] tend to
look like. This suggests an ability to summarize an entire
category by a mental variable or symbol, whose meaning
comes from the rules it enters into’’ (Pinker, 1999, p. 41).

The alternative position advanced here is that while it is
true that people have the capacity for performing classifi-
cation based on abstract rules (otherwise how could I even
write about the difference between rule-based and similar-
ity-based grandmotherhood?), it is wrong to assume that
core aspects of human cognition are based on such rule-
based computations (as in e.g., Fodor, 1983, 2001; Gallistel
& King, 2009; Marcus, 1999; Pinker, 2000). If the algo-
rithms humans deploy in the service of symbolic computa-
tion cannot be trusted to produce unfuzzy representations
of odd numbers, triangles, and perhaps even grandmoth-
ers, can they really be trusted to do the heavy lifting of mo-
ment-to-moment cognition if such cognition relies on
symbolic computation?

In experiment 6A, I ask two specific questions: First, do
people’s representations of the highly familiar concept
GRANDMOTHER remain graded even in a context that demands
decidedly ungraded representations? Second, do people
who demonstrate more conceptual gradedness in the do-
main of grandmothers also more likely to show gradedness
in other domains?

12.1. Participants, materials and procedure

Eighty-three participants were recruited from Mechan-
ical Turk, all from the United States. Fifty participated in
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the main experiment. Each participant was asked three
questions:

12.1.1. Graded even numbers

‘‘Is 400 a better even number than 798?’’ (Yes, No,
Unsure)

12.1.2. Graded triangles

‘‘Are some triangles better than others?’’ (Yes, No)
Anyone who answered ‘yes’ was asked a follow-up

question asking to explain their answer.

12.1.3. Graded grandmothers
Participants were asked to read the following scenario

and respond to the best of their ability.

‘‘A magazine is running a contest in which they award
$100 gift certificates to eligible contestants. To be eligi-
ble, you have to be a grandmother. That is the only cri-
terion. The decisions are made completely randomly.
All eligible contestants have a 25% chance of winning.
Please indicate the likelihood of each person winning
the contest, from 0% to 100%’’

This prompt was followed by the 10 choices shown be-
low presented in random order. Next to each question was
a text box that accepted a number from 0 to 100, with 0 as
the default.

' A 24 year old man with no kids.
' A 68 year old man with three adult children and 6

grandchildren.
' A 27 year old woman with no kids.

' A 43 year old woman with two children, aged 11 and 10.
' A 39 year old woman whose daughter just had a baby.
' A 41 year old woman with three grandkids.
' A 59 year old woman with one daughter who recently

gave birth to twins.
' A 66 year old woman with 6 kids, but no grandkids.
' A 64 year old woman with 3 sons and 2 grand-

daughters.
' A 68 year old woman with 2 grandsons and 4 grand-

daughters.

Following these questions, people were asked to pro-
vide demographic information including the highest level
of education they completed. A separate group of 33 peo-
ple were shown the descriptions of people above and asked
to rate each on a 1–5 scale from ‘‘Not a grandmother’’ to
‘‘Very typical grandmother’’

12.2. Results of Exp. 6A

12.2.1. Graded even numbers
Seven people responded ‘yes’, 38 ‘no’, and 5 were not

sure. Of the 45 people who were confident enough in their
answer to answer ‘yes’ or ‘no’, 16% thought that 400 was a
better even number than 798; 95% CI = 6–29%. As in Exp. 4,
people who answered ‘yes’ to this question gave
answers that referenced the roundness of 400 and its
greater number of factors. Here are three characteristic
examples:

1. ‘‘While 798 is technically even, 400 is also a perfect
square and has more ways that it can be divided’’.

2. ‘‘It ends in double zeros’’.
3. ‘‘Because 400 is comprised of all even numbers while

798 contains two odd numbers’’.

Fig. 6. Results of Exp. 5D. Panel A shows mean errors for each triangle type (±1 SE). Panel B shows the proportion of failures to select each given triangle,
with the shapes ordered by mean accuracy. Colors indicate type of triangle. Each box contains the mean and ±1 SE. Errors bars contain the 95% binomial CI.
Panel C shows the relationship between error rates and the typicality ratings collected as part of Exp. 5A. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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12.2.2. Graded triangles
A similar percentage of people responded saying that

some triangles were more typical than others (n = 7),
14%; 95% CI = 6–27%. When asked to explain their choice,
participants tended to mention ratios of sides. Here are
two examples:

1. ‘‘An equilateral triangle, in my mind, is more ‘‘triangu-
lar’’ than an extremely obtuse triangle’’.

2. ‘‘Those perfect sexy equilateral triangles are the most
trianglest’’.

12.2.3. Graded grandmothers
Each mentioned contestant was coded on three vari-

ables: gender, age, and the number of explicitly mentioned
grandchildren (Table 3). For one contestant, the number of
grandchildren was deliberately omitted. People were ex-
pected to infer that the 43 year old woman with 2 kids
aged 10 and 11 was not a grandmother (although, logically
she could have had an unmentioned grandchild). The sum-
mary statistics for each choice sorted by mean value are
presented in Table 3.

The responses were analyzed using linear mixed effects
models. The first analysis tested whether the gender of the
‘‘contestant’’ and their number of grandchildren predicted
their likelihood of winning. As evident from Table 3, the
answer is yes. Every subject made a sharp distinction be-
tween men and women, and grandparents and non-grand-
parents, t > 10, p$ .0001. This result serves as a check that
participants read and understood the question.8 All subse-
quent analyses include only the 5 genuine grandmothers.

First, I tested the hypothesis that contestant age and the
number of grandchildren were predictive of how likely
people thought each contestant was of winning, despite
the instructions stating that all eligible contestants had an
equal chance. To test this hypothesis, I compared a series
of linear mixed effect models predicting likelihood of win-
ning from the number of grandchildren and age (Table 3).
Adding number of grandchildren significantly improved
model fit compared to an intercept-only model,
v2(4) = 9.18, p = .002. Adding age further improved the

fit, v2(5) = 5.46, p = .02. These effects are visualized in
Fig. 7.9

Although most people’s responses were dichotomous (0
or 25), some people input other values. Overall, 29 re-
sponses (5.8%) were above 0, but less than 25
(M = 18.45%) and 16 responses (3.2%) were above 25%
(M = 60.8%). Of the 50 participants, 10 had at least one re-
sponse with a value other than 0 or 25. One may protest
that anyone who input a number other than 0 or 25 did
not understand the basic premise of the question that eli-
gible contestants had a 25% likelihood of winning. Perhaps
the graded nature of the grandmother concept revealed by
the analysis above is an artifact, being driven exclusively
by these participants who grossly misunderstood the ques-
tion. Perhaps they thought grandmothers with more
grandchildren could enter the contest numerous times.

A new indicator variable nonDiscreteness was set to 1 for
anyone who had at least one response other than 0 or 25. A
linear mixed effect model analysis showed a reliable posi-
tive interaction between nonDiscreteness and contestant-
age, t = 2.47, p = .01 showing that responses of people
who were non-discrete in their responses were more af-
fected by contestant age. However, the inclusion of age
and number of grandchildren reliably improved model fits
both for the 40 discrete responders (those who responded
with only 0 and 25), v2(2) = 7.13, p = .03, and for the 10
non-discrete responders, v2(2) = 8.15, p = .02.

Recall that a separate group of participants viewed the
descriptions of the 10 people in Table 3 and were asked
to rate how typical each was of a grandmother (‘‘Not a
grandmother’’ was one of the options). Unsurprisingly,
people distinguished between grandmothers and non-
grandmothers as shown by a reliable improvement in fit
when an is-a-grandmother dichotomous predictor is used
to predict typicality, v2(1) = 1112.92, p = .02, p$ .0001.
Also not especially surprising is that the model fit is further
improved when age, v2(1) = 394.78, p$ .0001, and num-
ber of grandchildren, v2(1) = 12.79, p = .0003, are added.

Table 3
Main results of Exp. 6A.

Contestant Age Gender Num. grand-children Mean response 95% CI

A 24 year old man with no kids 24 M 0 0.00 –
A 27 year old woman with no kids 27 F 0 0.00 –
A 43 year old woman with two children, aged 11 and 10 43 F 0 0.90 0–1.96%
A 66 year old woman with 6 kids, but no grandkids 66 F 0 1.00 0–2.21%
A 68 year old man with three adult children and 6 grandchildren 68 M 6 6.70 4.90–8.50%
A 39 year old woman whose daughter just had a baby 39 F 1 22.80 21.72–23.88%
A 59 year old woman with one daughter who recently gave birth to twins 59 F 2 24.66 23.68–25.64%
A 41 year old woman with three grandkids 41 F 3 25.20 24.20–26.20%
A 64 year old woman with 3 sons and 2 grand-daughters 64 F 2 26.90 25.90–37.90%
A 68 year old woman with 2 grandsons and 4 grand-daughters 68 F 6 27.00 25.90–28.10%

8 Though note that some people (11/50)—identified the 68 year-old
grandfather of 6 as eligible with likelihoods from 25% (n = 9), 30% (n = 1),
and 80% (n = 1). The effects of age and number of grandchildren were
independently significant both for people who made this (presumably
inattentional) error and those who did not.

9 The description of some eligible contestants explicitly used the word
grandchild/grandson/granddaughter and these were (inadvertantly) corre-
lated with contestant age. An additional model using age, number of
grandchildren, and an indicator variable coding for explicit use of one of
these words showed that explicit use of the grandchild/grandson/grand-
daughter was indeed correlated with higher likelihoods, t = 2.22, p = .02,
but age continued to be a additional reliable predictor, t = 2.32, p = .02. In
this analysis as in the ones above only eligible contestants, i.e., the
grandmothers, were included.
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Importantly, controlling for grandmother status, typicality
predicted the likelihood of winning, v2(1) = 16.35,
p < .0001. More typical grandmothers were judged to be
more likely to win.

We see here that even in a context that calls for categor-
ical responses, typicality continues to play a role, just as it
did in classifying polygons as triangles. Indeed, within the
grandmother category, the correlation between mean like-
lihood of winning and mean typicality was .81.

12.2.4. Relationships between responses
An important question that this study allows us to ask is

whether the responses of the 50 participants to these 3
questions were related in any way. One possibility is that
people’s responses reflect content knowledge only. If true,
we might expect the responses to the even number ques-
tion to be unrelated to responses to the triangle question,
and also unrelated to people’s concept of grandmothers.
A second possibility is that people who tend to discretize
formally defined concepts like parity are more likely to dis-
cretize other formally defined concepts. Of the 7 people
who responded ‘yes’ to the graded even number question,
3 responded ‘yes’ to the graded triangle question (43%). Of
the 38 people who responded ‘no’ to the graded even num-
ber question, only 2 (5%) responded ‘yes’ to the graded tri-
angle question. Fisher’s exact test showed that these
proportions were reliably different, p = .02, odds ratio = .08.
A linear mixed-effects logistic regression showed that a
model predicting the response to the graded even number
question from education and the response to the triangle
question was reliably better than a model that included
education only, v2(1) = 6.88, p = .009.10

In the final analysis, the responses to the even-number
and triangle questions were used to predict the responses
to the grandmother question. Insofar as all these questions
reflect the degree of gradedness of concepts despite clear
necessary and sufficient conditions, people who believe

that 400 is a better even number than 798 and/or that
some triangles are better than others may also represent
grandmothers in a more graded manner and thus be more
affected by putatively irrelevant information like age and
number of grandchildren.

The base model predicted the likelihood of winning (for
grandmothers only) from participant’s education, contes-
tant age, number of grandchildren, as well as the response
to the graded even number question and response to the
graded-triangle question. This model was compared to a
model that included interactions between the answers to
the graded even number and graded triangle question
and the variables coding contestant age and number of
grandchildren. The latter model was a better fit to the data,
v2(6) = 24.91, p < .001. In particular, participants who
thought that 400 was a better even number than 798 were
more influenced by the age of the contestant than partici-
pants who thought 400 and 798 were equally even,
t = 3.81, p = .0001. The interaction between the triangle-
question and age/number of grandchildren variables was
not independently reliable.

13. Experiment 6B. Controlling for anchoring effects

In Exp. 6A, the grandmothers judged to be more likely
to win were ones that were older and had more grandchil-
dren. It is conceivable that these results reflect an anchor-
ing effect caused by seeing higher numbers as part of the
contestant description (Daniel Casasanto, pers. comm.).
Anchoring effects of this sort are well-known. For example,
Tversky and Kahneman (1974) showed that random
numbers (0–100) generated by a ‘‘wheel of fortune’’ appa-
ratus in the subject’s presence reliably affected those sub-
jects’ estimates of the percentage of African countries in
the United Nations: the median responses were 25 and
45 for the groups that received starting random values of
10 and 65, respectively (see also Ariely, Loewenstein, &
Prelec, 2003). Although such effects operate in uncertain
domains and people should be a whole lot more certain
of whether a woman with grandchildren is really a

Fig. 7. The mean rating of winning by grandmothers of different ages and having different number of grandchildren. Error bars indicate the within-subject
95% CI of the mean.

10 Education was not a reliable predictor in any of the analyses and its
inclusion does not change any of the results.
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grandmother than how many African countries are in the
UN, perhaps the results of Exp. 6A are an artifact of anchor-
ing nonetheless.

13.1. Participants, materials and procedure

Fifty-three people from Amazon Mechanical Turk were
recruited. Three participants was eliminated for indicating
in the comments that they did not understand the
question. The procedure and materials were identical to
Exp. 6A except that the criterion for the eligibility in the
contest was altered: Rather than only grandmothers being
eligible, participants were told that only women under 60
were eligible. As in Exp. 6A, this criterion yielded 5 eligible
and 5 ineligible contestants. If anchoring effects rather
than the eligibility instructions are responsible for the
effects observed in Exp. 6A of graded likelihood within
eligible contestants, then participants should continue to
rate older eligible female contestants as more likely to
win than younger eligible ones. If, on the other hand,
the eligibility criterion is responsible for the finding
in Exp. 6A, then age might now be negatively correlated
with perceived eligibility. At the very least we should find
a significant age-by-experiment interaction when
examining the likelihood of winning within the eligible
group.

13.2. Results of Exp. 6B

Just as in Exp. 6A, participants drew a sharp distinction
between eligible and ineligible contestants. The mean like-
lihood of winning for ineligible individuals was 1.12% and
the mean likelihood of winning for eligible entrants was
25.04%, F(1,49) > 1000. Given that eligibility was now in-
versely correlated with contestant age, it was, unsurpris-
ingly, a negative predictor of the likelihood of winning,
b = #.44, t = #14.2, p$ .0001. The critical question, how-
ever, was whether anchoring effects led people to rate
some eligible contestants as more likely to win than other
eligible contestants.

Because the critical tests concerned effects for the
eligible contestants only, the analyses that follow include
just the eligible contestants: the 5 grandmothers in Exp.
6A and the 5 females under 60 in Exp. 6B. The first analysis
tested whether contestant age was differentially predictive
of likelihood of winning in Exps. 6A and 6B. A mixed-ef-
fects model analysis showed that this interaction was
highly reliable, t = 3.44, p = .0006. Recall that age was
positively correlated with winning likelihood in Exp. 6A,
b = .11. This was not the case for Exp. 6B, b = #.03. The
interaction between number-of-grandchildren and experi-
ment was likewise reliable, t = 3.06, p = .002. While
number-of-grandchildren predicted greater likelihood of
winning in Exp. 6A, b = .62, this was no longer true for
Exp. 6B, b = #.33, p = .11. The negative coefficients indicate
that rated likelihood was winning was negatively
associated with age and number of grandchildren. So, for
example, the 59 year old female was now rated as
numerically less likely to win than the 24 year old female
(M59 year old = 24.5%; M24 year-old = 25.3%), although not

significantly so. In sum, the results of Exp. 6B make it
unlikely that the findings of Exp. 6A stem from anchoring
effects.11

It may be objected that the present account predicts
that the ‘‘females under 60’’ instruction should have led
people to rate female contestants just under the age
cut-off as being less likely to win (because they are almost
ineligible) than younger females who are further from the
boundary. Although there was a trend in this direction, it
was not reliable. ‘‘Women under 60’’ is a purely ad hoc
criterion and larger effects may be obtained for categories
with more salient examples of good membership. For
example, being a teenager, even when formally defined
based on an age cut-off, has rich semantic connotations
that go beyond age. A precocious 12-year old may be
classified as a teenager even when it is made clear
that teenager status is to be granted only to 13–19-year
olds.

13.3. Discussion of Experiments 6A and 6B

Whatever confusion people may have about what
makes a number even or a polygon a triangle, everyone
knows what makes someone a grandmother. Yet, when
placed in a context that required simply to distinguish be-
tween grandmothers and non-grandmothers, a sizeable
minority once again relied on an apparently graded repre-
sentation according to which having more grandchildren
makes one a ‘‘better’’ grandmother and thus apparently
more likely to win a contest for which grandmothers are
eligible. The results of Exp. 6B are inconsistent with the
possibility that the findings of Exp. 6A were due to an
anchoring effect.

Let us pause to consider why it should even make sense
to talk about typical and atypical grandmothers. An obvi-
ous answer is that the properties that make someone a typ-
ical grandmother are correlated with actually being a
grandmother. Moreover, under normal circumstances per-
ceptual cues such as gray hair, wrinkles, and baking muf-
fins, are much more readily available than the formal
definition of ‘‘has at least one grandchild’’ such that even
when placed in contexts where such ‘‘peripheral’’ informa-
tion should not be relevant, people continue to rely on it
(i.e., the representations used in the task encode these
details).

To reiterate: My claim is not that people are incapable of
following rules or of forming highly abstract representa-
tions. Given enough time, most of the subjects tested here
appear to do just that. However, the overall pattern of
results strongly suggests that this process of abstraction is
far from trivial. Many people continue to rely on similar-
ity-based representations that integrate probabilistic cues
suggesting them to be a kind of default state (exactly as

11 In another version of this experiment in which the instructions stated
that all participants were equally likely to win, no contestants were rated as
being significantly more likely to win than others, v2(9) = 8.42, p = .49
(model comparison with/without contestant as a predictor), and neither
age nor number of grandchildren predicted the likelihood of winning, a
result that also speaks against anchoring as an explanation for the results of
Exp. 6A.
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conceived in connectionist models, e.g., Bybee & McClel-
land, 2005; Elman, 2009; McClelland & Rumelhart, 1981).

What of the claim that people possess two GRANDMOTHER

concepts (and presumably two ODD concepts, two TRIANGLE

concepts, etc.)—one graded and perceptually-based and
one conforming to classical definitions? Such an interpre-
tation meets with two serious objections. First, what are
the conditions necessary to trigger the rule-based repre-
sentation? After all, participants in Exp. 4 and 6A were
not asked whether 400 looks more even than 798. They
were asked whether it is more even than 798 (and addi-
tionally asked to justify their answer). Participants were
explicitly told that all grandmothers had an equal chance
of winning, yet they allowed typicality to override this con-
straint. If it is true that ‘‘our own kinship system gives us a
crisp version of ‘grandmother’: the mother of a parent,
muffins be damned’’ (Pinker, 2009), then such crisp con-
cepts should be found here, and yet here they are ‘‘mud-
died up’’ by typicality. If Exp. 6A and the earlier explicit
classification studies are insufficient to trigger the formal
concept, then what is?

The second objection is that any theory that posits a
distinct concept for each situation risks a combinatorial
explosion. Would we need a new GRANDMOTHER concept to
explain each distinct pattern of results likely to be
obtained if people were asked whether a woman who did
not know she had a grandchild (but actually did) was a
grandmother? Or asked at which point a male-to-female
transgender individual with a grandchild became a
grandmother? Or asked whether women who gave up a
child for adoption or lost custody of the child (under
various circumstances) could become grandmothers? The
very ability to consider these scenarios, each of which
requires a reconsideration of what properties are relevant
and irrelevant requires flexibly instantiating subtly
different conceptual representations and not simply
following a rule.

14. General discussion

People routinely made errors in classifying items into
well-defined categories such as ODD, EVEN, and TRIANGLE and
made inferences consistent with their classification deci-
sions and inconsistent with application of trivially simple
rules. The response patterns were well predicted by stimu-
lus characteristics. In the case of parity, participants were
much more likely to mis-identify the parity of a number
if it had opposite-parity digits. Such input dependence
was unrelated to the formal correctness of participants’
definitions of numerical parity. Similar kind of input-
dependence was observed in classifying triangles, e.g. peo-
ple failed to select scalene triangles as triangles more than
15% of the time and failed to uniformly apply a basic geo-
metric property true of all triangles, to all triangles. The ob-
served response patterns cannot be explained as simple
errors of perceptual selection or as simple performance
quirks. Many participants insisted—in ways that were
quite reasonable—that 400 is more even than 798 and that
some triangles are more triangular, e.g., by appealing to the
relative difficulty of dividing 798 by 2 compared to divid-
ing 400 by 2, and by commenting on the ‘‘perfection’’ of

equilateral triangles relative to scalene triangles.12 The ten-
dency to not use hard-and-fast rules predicted people’s per-
formance in Exp. 6A which required them to make
inferences about the likelihood of winning a hypothetical
contest. Despite being clearly instructed that only grand-
mothers are eligible and that all eligible entrants have an
equal chance of winning, people nevertheless rated the more
typical grandmothers—ones who were older and had more
grandchildren—as being more likely to win.

Computational devices that rely on discrete symbols—
digital computers being the paradigmatic example—do not
make such mistakes. Storing numbers in discrete registers
allows algorithms to operate over them in a context-free
way. The algorithm for computing parity is remarkably sim-
ple. My laptop takes .038 ls to compute the parity of 2 and
.038 ls to compute the parity of 9182397487123874827.
People’s performance is not simply slower and more error
prone, but qualitatively different, displaying inherent sensi-
tivity to aspects of the input that are formally irrelevant to
the operation being performed.

Although such input dependence might be expected in
the performance of children just learning the formal rules
of membership (Berch, Foley, Hill, & Ryan, 1999; Clements,
Swaminathan, Hannibal, & Sarama, 1999; Tsamir, Tirosh, &
Levenson, 2008), it is generally assumed to disappear by
late childhood. The present results show this not to be
the case (see also Ward, 2004 for another demonstration
of educated adults failing to classify non-canonical trian-
gles as triangles). Even with no externally imposed time-
pressure, adult classification of formally-defined categories
continues to show a predictable pattern of errors. These re-
sults pose a challenge to theories positing that human
concepts of well-defined categories have discrete repre-
sentations. As recently stated by Gleitman et al., ‘‘No
person who knows and states that all odd numbers are
equally odd should rate some of them more odd than any
others, even by a smidgen’’ (2012). I show here that not
just typicality ratings or latencies, but identification itself
is sensitive to allegedly irrelevant features of the input.

It is tempting to ascribe the results of the present studies to
inattention or perceptual mis-identification. On this account,
classification errors in judging parity should be correlated
with errors on tests designed to measure selective attention
(e.g., flanker congruity task). The bulk of the evidence does
not support this account. For example, as shown in Exp. 3A,
perceptual selection as measured by a flanker task correlates
with the effect of digit-length on parity RTs, but not the effect
of the number of opposite-parity digits. It is also unclear how
this account can explain the observed findings in the domain
of triangles (Exps. 5A–5D) and grandmothers (Exp. 6A).

There is an important difference between the present
results and such classic findings as Moyer and Landauer’s
(1967) demonstration that e.g., people make more errors
judging the truth value of 4 < 5 compared to 1 < 5. Such

12 The relative status of triangles is aptly captured by Abbott in Flatland:
‘‘The birth of a True Equilateral Triangle from Isosceles parents is the
subject of rejoicing in our country for many furlongs around. After a strict
examination conducted by the Sanitary and Social Board, the infant, if
certified as Regular, is with solemn ceremonial admitted into the class of
Equilaterals’’ (Abbott, 1884/2008).
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findings show that human computations underlying
numerical inequality judgments are analog, reflecting the
actual difference between the two numbers. But although
the desired response is discrete the degree to which one
number is larger than another is, in fact, continuous. In
contrast, the parity of a number, the triangleness of a trian-
gle, or whether someone is a grandmother is not—or at
least should not be—graded. And yet, as shown by the pres-
ent results, it is. The argument that such graded perfor-
mance reflects the operation of a peripheral identification
system (Armstrong et al., 1983; Gleitman et al., 2012) can-
not, it would seem, account for the presently observed sys-
tematic failures in identification and inference. Given that
a critical function of concepts is discriminating category
members from nonmembers (e.g., Prinz, 2004), to shift this
burden to peripheral identification procedures would be to
deny concepts their very raison d’etre.

Not only were people’s errors systematic, but individu-
als’ classification performance was correlated in a meaning-
ful way with their explicit endorsements of statements
about gradedness of formal categories. Participants who
thought that some triangles were better than others were
more likely to mis-classify the parity of numbers like 798
(Exp. 4). Participants who thought that 400 was a more
even number than 798 were likely to think that more typi-
cal grandmothers had a better chance of winning the con-
test described in Exp. 6A. Do such correlations simply
reflect the greater mathematical savvy of some people than
others? On first blush, this question is somewhat circular: if
we assume that part of mathematical savvy is to view all
even numbers as equally even then mathematical savvy
predicts mathematical savvy. A more interesting possibility
is that there is a dimension of individual variability related
to forming discrete concepts and that mathematical savvy
arises from the ability to discretize and abstract over
task-irrelevant information (although it is possible that real
mathematical savvy might actually be hindered by such
abstraction). The question of why some people appear to
discretize membership in formal categories more than oth-
ers deserves a much more rigorous investigation than is
provided here. The individual differences described here
bear a strong similarity to those described by Wasserman
and colleagues (Wasserman & Castro, 2012 for review) in
which about 30% of participants overlook seemingly trivial
symbolic rules (if all same ? A, else B) in favor of graded
category membership based on similarity.

Mathematically, all even numbers are equally even and
all odd numbers are equally odd. I have argued that this is
not the case for the psychological concept of oddness. But
what does it mean for 400 to be more even than 798? Is it
that 400 looks more even? At issue, I think, is not percep-
tual similarity, but overall representational similarity. Peo-
ple mistake 798 for an odd number not because it looks
like an odd number. Rather, the reason 798 looks odd (at
least odder than 400), is that the representation of 798 is
closer to that of other odd numbers than the representa-
tion of 400. 798 is almost odd.13 On this view, the human

algorithm of parity judgments is best conceived as a
transformation of a representational state-space in which
numbers ‘‘reside.’’ This transformation is categorization
(Lupyan, Mirman, Hamilton, & Thompson-Schill, 2012)
resulting in odd numbers being on one side of a decision
boundary and even numbers on the other. However, the
transformation is partial, and the representational space
retains some of its analog structure, also giving rise to
numerical distance effects (Moyer & Landauer, 1967) and
spatial–numerical interactions (Dehaene et al., 1993).

In rejecting as absurd the idea that people’s representa-
tions of integers or plane-geometry categories are graded,
Armstrong et al. (1983) ask: how could one ever compute
with such a graded representation? (p. 284). The answer
is: not very well! Or at least far worse than what can be
achieved by an algorithm that fully abstracts irrelevant de-
tails from the input (i.e., MOD 2). Why aren’t people better
at tasks like this? One answer is that such context-free
computations are simply not needed for ordinary cogni-
tion. I expect that individuals who mis-identify the parity
of 798 or those who reject scalene triangles as triangles
are unremarkable in their everyday behavior and are unli-
kely to have the sort of problems in everyday cognition
that would be expected if running such algorithms consti-
tuted the bulk of cognition. Recall that a substantial por-
tion of the sample have college and graduate degrees,
and these individuals too make the same errors! On the
present account, such errors reflect a failure to fully disen-
gage similarity-based computations on which the rest of
cognition depends. This reliance on graded context- and
task-dependent representations is, arguably, what enables
people to flexibly construe the same stimuli in multiple
contradictory ways, as called on by task goals (Linhares,
2000).

Perhaps the better question is not why people some-
times mistake 798 for an odd number or fail to classify a
scalene triangle as a triangle, but rather how people ever
transcend these limitations. After all, although everyone’s
classification performance is sensitive to typicality in
timed presentations, many people’s performance becomes
essentially perfect when time pressure is removed. Despite
thinking that rotated triangles are less triangular, people
can be taught to perform geometric computations regard-
less of orientation.

Notwithstanding the relative difficulty of context-inde-
pendent computations (which are, it should be noted, the
bread and butter of any theory positing compositionality
as foundational, e.g., Fodor, 2001), people can, under some
circumstances approximate symbolic, context-free compu-
tation. Clearly, it is possible for people to operationalize
parity in a rigorous way, to build computers that imple-
ment perfect parity algorithms, and even simply to ponder
these very questions. What enables humans to do this
awaits explanation (see Penn, Holyoak, & Povinelli, 2008
and commentaries for related discussion). However, this
critically important question is ignored when a field as-
sumes a priori the existence of many of the very capacities
that are in need of explanation. Cognitive scientists need to
take seriously the constraints that the implementational
medium—neural networks—place on computations per-
formed by biological organisms (Buonomano & Maass,

13 Just as a woman who is about to have a grandson is almost a
grandmother.
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2009; Freeman, 2007; Zylberberg, Dehaene, Roelfsema, &
Sigman, 2011).14 Rather than being the building blocks of
human cognition, symbolic computation may emerge when
‘‘core’’ human cognition employing similarity-based fuzzy
representations is augmented by culture, education, nota-
tional systems, and language itself (e.g., Clark, 1998; Gomila,
Travieso, & Lobo, 2012; Lupyan, 2012a, 2012b; McClelland,
2010).

14.1. A note on the use of crowdsourcing platforms in
cognitive science

The 13 experiments in this paper include a total of 1117
participants of whom all but 35 were tested using the
crowdsourcing service Amazon Mechanical Turk (mTurk).
A number of good reviews are now available detailing
demographics, motivations, and quirks of mTurk’s enor-
mously large and diverse user base (Berinsky, Huber, &
Lenz, 2011; Buhrmester, Kwang, & Gosling, 2011; Good-
man, Cryder, & Cheema, 2012; Mason & Suri, 2012; Paolacci,
Chandler, & Ipeirotis, 2010; Ross, Irani, Silberman, Zaldivar,
& Tomlinson, 2010). There is also a largely successful effort
to replicate classic findings in cognitive psychology through
this platform (Crump, McDonnell, & Gureckis, 2013). The ra-
pid rise of crowdsourcing in the social sciences may mean
that it will displace a large proportion of lab-based tasks,
especially when in-person observation and tight controls
over the user’s hardware is not required (although clever
use of within-subject designs can overcome some of these
limitations). Collecting data from much larger and more
diverse participant groups will help to address the problem-
atic reliance on ‘‘WEIRD’’ 18–22 year-old college students
(Henrich, Heine, & Norenzayan, 2010) and lead to a richer
understanding of individual differences that traditional uni-
versity lab multi-trial/low-n tasks may obscure.
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