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Across the cognitive sciences, a picture is emerging in 
which the brain is viewed as an engine of probabilistic 
prediction. On this view, every level of the hierarchically 
organized system that constitutes the brain works to pre-
dict the activity in the level below it (Fig. 1). A remark-
able consequence of this arrangement is that seeking to 
reduce the overall prediction error produces representa-
tions at multiple levels of abstraction, flexibly incorporat-
ing whatever sources of knowledge help to reduce the 
overall prediction error. The higher-level (more abstract) 
representations formed in the goal of minimizing predic-
tion error in the present enable better predictions in the 
future.1

The Predictive Brain

We begin with a brief outline of the predictive-processing 
framework and then apply it to two domains that, on the 
surface, seem to have little to do with each other but are 
unified under the new framework: the cognitive penetra-

bility of perception, and effects of language on percep-
tion, action, and “thought” more broadly.

Consider the left-hand image in Figure 2—the so-
called Cornsweet illusion. To most people, the central 
paired tiles appear to be very different shades of gray—
an appearance that, as the right-hand picture reveals, is 
illusory. The illusion occurs because our visual experi-
ences do not veridically reflect the current inputs but are 
informed by priors (prior beliefs, usually taking the form 
of nonconscious predictions or expectations) concerning 
the world. The relevant prior in this case is that surfaces 
tend to be equally reflectant rather than becoming gradu-
ally brighter or darker toward their edges. The image that 
produces the illusion displays a highly atypical combina-
tion of illuminance and reflectance properties, and the 
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Abstract
Can what we know change what we see? Does language affect cognition and perception? The last few years have 
seen increased attention to these seemingly disparate questions, but with little theoretical advance. We argue that 
substantial clarity can be gained by considering these questions through the lens of predictive processing, a framework 
in which mental representations—from the perceptual to the cognitive—reflect an interplay between downward-
flowing predictions and upward-flowing sensory signals. This framework provides a parsimonious account of how 
(and when) what we know ought to change what we see and helps us understand how a putatively high-level trait 
such as language can impact putatively low-level processes such as perception. Within this framework, language begins 
to take on a surprisingly central role in cognition by providing a uniquely focused and flexible means of constructing 
predictions against which sensory signals can be evaluated. Predictive processing thus provides a plausible mechanism 
for many of the reported effects of language on perception, thought, and action, and new insights on how and when 
speakers of different languages construct the same “reality” in alternate ways.
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brain uses what it has learned about typical patterns of 
illumination and reflectance to infer (falsely, in this case) 
that the two central tiles must be different shades of gray. 
In the world we actually live in, these particular prior 
beliefs or neural expectations are provably “Bayes opti-
mal”—that is, they represent the globally best method for 
inferring the state of the world from the ambient sensory 
evidence (Brown & Friston, 2012).

This view of “perception-as-inference” originated with 
von Helmholtz (1867/2005) and has had many more 
recent champions, including Ulric Neisser and Richard 
Gregory. The brain, on these accounts, combines prior 
knowledge or expectations (including knowledge about 
the present context) with the incoming sensory evidence 
to yield a percept that reflects its best available hypoth-
esis concerning the most probable state of the world. It is 
only in recent years, however, that these broad visions 
have been given effective computational flesh, shown to 
be (roughly speaking) neurally plausible, and seen to 
converge with compelling bodies of work in psycho-
physics and cognitive psychology showing that much of 
perception conforms to optimal (Bayesian) ways of com-
bining sensory evidence with prior knowledge within the 
framework of predictive processing.

The predictive-processing framework (a term we use 
for models that implement hierarchical predictive 

coding; Clark, 2013; Friston, 2010; Hohwy, 2013) shares 
many features with earlier work on perception-as-infer-
ence and developments in connectionism/parallel dis-
tributed processing, such as McClelland and Rumelhart’s 
interactive activation model (for some recent discussion, 
see McClelland, 2013; McClelland, Mirman, Bolger, & 
Khaitan, 2014). The predictive-processing framework 
adds an important emphasis upon hierarchical structure 
and the attempt to predict sensory signals (see also 
Hinton, 2007). A key emphasis of predictive-processing 
models is an asymmetry between the forward and back-
ward flow of information: The forward flow computes 
residual errors, while the backward flow delivers predic-
tions. Percepts emerge via a recurrent cascade of “top-
down” predictions that involve expectations spanning 
multiple spatial and temporal scales. The downward pre-
dictions reflect what the system expects given what it 
already “knows” about the world and about the current 
context. These predictions are combined with incoming 
sensory data to arrive at progressively better guesses 
about the source of the signal (the world). Aspects of the 
input that are unexplained are sent forward as predic-
tion-error signals that “carry the news” by pushing unex-
plained elements of the sensory signal upward so as to 
select new top-down hypotheses that are better able to 
accommodate the present sensory signal. This process 
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Fig. 1. A highly schematized view of the predictive-processing account of information transfer in the brain. Bottom-up inputs are processed 
in the context of priors (beliefs/hypotheses) from levels higher up in the hierarchy. The unpredicted parts of the input (errors) travel up the 
hierarchy, leading to the updating of subsequent predictions, and the cycle continues. The relative contribution of the bottom-up signal is 
determined by varying precision estimates. A highly variable or imprecise signal is given less weight.
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runs concurrently and continuously across multiple lev-
els of a processing hierarchy.

While most of the predictions are unconscious, one 
can sometimes become aware of them when they are 
violated. For example, imagine drinking from a glass of 
what you think is orange juice only to realize on tasting 
it that it is actually milk. The difference between the taste 
of that milk when one expects it and when one expects 
orange juice instead is the orange-juice expectation made 
conscious (Lupyan, 2015, for discussion). Similarly, con-
sider the experience of an unexpected omission, as when 
a musical note is missing from a familiar composition. 
Such omissions can be as perceptually striking and as 
salient as the most vibrant tone—an otherwise puzzling 
effect that is neatly explained by assuming that the con-
struction of perceptual experience involves expectations 
based upon some kind of model of what is likely to 
occur.

The perceptual problems that confront us in daily life 
vary greatly in their demands. For some tasks, it is best to 
deploy large amounts of prior knowledge, while for oth-
ers it may be better to let the world do as much of the 
driving as possible. Walking around our own house in 
the dark, it may be wise to let detailed top-down knowl-
edge play a substantial role. Driving fast along an unfa-
miliar winding mountain road, we need to let sensory 
input take the lead. How is a probabilistic-prediction 
machine to cope? It copes by continuously estimating 
and re-estimating its own sensory uncertainty, assigning 
more or less weight to top-down expectations versus 
bottom-up inputs in the service of minimizing overall 
prediction error. Within this framework, estimations of 
sensory uncertainty modify the impact of prediction-error 

signals at each level of processing according to their esti-
mated precision, which in this case is the brain’s best 
guess at their certainty or reliability (inverse variance, for 
the statistically savvy). Variable precision weighting is 
thus a mechanism for tuning the extent to which input is 
modulated by top-down predictions. As we shall see, this 
mechanism also provides a way for language to serve as 
a superbly flexible tool for tuning sensory processing.

Perception as a Predictive and 
Penetrable Process

Viewing perception as a predictive process helps to 
resolve a long-standing argument concerning whether 
perception is “penetrated” by knowledge (Pylyshyn, 
1999). Within the predictive-processing framework, per-
ception is expected to be penetrable to the extent that 
such penetration minimizes overall (long-term) predic-
tion error (Lupyan, 2015). If information from prior 
experience, expectations, knowledge, beliefs, and so 
forth lowers overall prediction error, then this informa-
tion will be used to guide perceptual processing (we 
reiterate that this process is not a “decision” made by 
the organism but the consequence of minimization of 
the prediction error). In some cases, this penetration 
changes what we consciously experience (e.g., the 
lightness of the tiles in Fig. 2). In other cases, the con-
flict between bottom-up inputs and top-down predic-
tions can be resolved at a higher level. For example, in 
Figure 3, the meaning of the central image changes 
depending on its context, but what we literally see is 
(relatively) unaffected (at least when we are free to 
examine the image at our leisure).

Fig. 2. The Cornsweet illusion. The image on the left depicts a typical Cornsweet illusion. The center of the two tiles comprising the central pairing 
appear to be different shades of gray. The image on the right reveals that they are, in fact, the same shade of gray. Reprinted from “An Empirical 
Explanation of the Cornsweet Effect,” by D. Purves, A. Shimpi, and R. B. Lotto, 1999, The Journal of Neuroscience, 19(19), p. 8549. Copyright 1999 
by the Society for Neuroscience. Reprinted with permission.
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There is, of course, no gatekeeper deciding the extent to 
which a cognitive state should penetrate perception. In 
contexts where altering the activation patterns at lower lev-
els of processing minimizes overall prediction error, we 
should find that what we know changes what we see. In 
other situations, the conflicts between predictions and 
inputs are resolved at higher levels that are sometimes 
referred to as decisional or post-perceptual stages. These 
are cases in which our perceptual phenomenology is rela-
tively unaffected by knowledge and expectations. The pre-
dictive-processing framework offers a precise way to strike 
this balance according to the estimated reliability of the 
prediction-error signal at different levels of processing.

This formulation in terms of predictive processing helps 
to resolve two persistent confusions. First, it is commonly 
argued that if what we knew changed what we saw, then 
knowing that the two tiles in Figure 2 are actually the same 
lightness ought to cause us to see them that way (e.g., 
Pylyshyn, 1999). The problem is that discounting the input 
in this way is incompatible with long-term error reduction. 
If the illusory percept offers the best prediction in the major-
ity of situations, then, in the long term, the illusion is Bayes 
optimal. Simply letting a belief override a bottom-up input 
will, in many cases, result in very high prediction error; the 
input and the higher-level belief need to be weighted 
according to their respective likelihoods. Second, critics of 
cognitive penetrability contend that many demonstrations 
of effects of beliefs, knowledge, and expectations on per-
ception are merely attentional, such that knowledge can 
affect what one attends to but not how the attended inputs 
are subsequently processed (see Lupyan, 2015, for review). 

In contrast, within the predictive-processing framework, 
attention is not something one “focuses” or “deploys” 
(Anderson, 2011). Rather, it is the mechanism of variable 
precision weighting itself. When one “attends” to something, 
small deviations from expectations are weighed more than 
when one is not attending to it (Den Ouden, Kok, & de 
Lange, 2012; Feldman & Friston, 2010). As a result, the neu-
ral representations of an object that is being attended 
(because it is task relevant) are measurably different than 
those of the same object when it is not attended (e.g., 
Çukur, Nishimoto, Huth, & Gallant, 2013).

Predictive Processing and the 
Relationship Among Language, 
Perception, and “Thought”

A commonly held view is that the sole function of lan-
guage is to communicate our thoughts. On this view, 
words and larger linguistic constructions latch onto pre-
existing concepts, enabling highly flexible communica-
tion, but do not alter the workings of “nonverbal” systems 
involved in, for instance, categorization, memory, and 
perception (Pinker, 1994; Snedeker & Gleitman, 2004). A 
corollary of this view is that although different languages 
provide their speakers with different ways of talking 
about things (Malt et  al., 2015), these differences have 
nothing to with how we think about or perceive things 
(Gleitman & Papafragou, 2005).

A flurry of findings from cognitive and developmental 
psychology, however, argue for a much more transforma-
tive role of language both in higher-level cognition and 
in basic perception (for reviews, see Boroditsky, 2010; 
Casasanto, 2008; Lupyan, 2012). Language not only func-
tions as a means of communicating our thoughts but 
plays an active role in shaping them. Rather than pas-
sively reflecting the joints of nature, words and larger 
constructions help carve joints into nature. For example, 
controlled studies of the famous “Eskimo words for 
snow” thought experiment show that, under certain con-
ditions, named categories are easier to learn than equally 
salient unnamed categories (Lupyan, Rakison, & 
McClelland, 2007). Once learned, verbal labels continue 
to be uniquely effective in activating conceptual content 
(Boutonnet & Lupyan, 2015;  Lupyan & Thompson-Schill, 
2012). Considering the relationship between language 
and thought within the framework of predictive process-
ing allows us to go beyond these individual observations 
toward a fuller, more unifying account.

Words as artificial contexts

We take for granted that we can change people’s behav-
ior using language. It is tempting to think of this ability in 
terms of language activating a repository of stored knowl-
edge (a mental lexicon). A very different perspective is 

Fig. 3. Another example in which the prior local contextual cues set 
up expectations. When the central character(s) are processed in the let-
ter context, the B hypothesis makes the raw visual data most probable. 
When processed in the number context, the 13 hypothesis makes the 
very same raw visual data most probable. Unlike the Cornsweet illu-
sion, the central image remains visually ambiguous even as its meaning 
is disambiguated because the top-down prediction can be integrated 
with the bottom-up signal at a relatively higher level.
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that language input directly affects mental states just like 
other perceptual inputs (Elman, 2009). For example, in a 
study by Çukur and colleagues (2013), participants 
undergoing fMRI watched movie clips passively or while 
monitoring for humans or for vehicles. The verbal 
prompts to attend to one category or another shifted 
neural representations throughout the brain (including 
primary visual cortex), such that a verbal prompt to 
attend to vehicles expanded the neural representations of 
vehicles and semantically related entities while collaps-
ing semantically distant categories.2

Importantly, words and larger verbal constructions are 
special kinds of perceptual inputs. While perceptual expe-
riences of, for example, vehicles are always experiences 
of specific vehicles, the word “vehicle” is categorical.3 
Verbal cues (even if self-generated) can therefore act as 
highly flexible contexts (sets of priors) within which an 
organism can appropriately weight the incoming input, 
possibly through a broad, fast retuning of the organism’s 
entire semantic network, of the sort shown by Çukur et al. 
(2013). If this is true, we might expect that simply hearing 
a word can lead the visual system to generate a predictive 
signal helping to process an input that is otherwise too 
weak or noisy. Indeed, in a recent study, simply hearing a 
word boosted otherwise invisible images of items match-
ing the named category into awareness (Lupyan & Ward, 
2013).

Viewed from the perspective of predictive processing, 
language directed at others and at oneself (e.g., in verbal 
rehearsal and other forms of self-directed speech) 
becomes a powerful tool for manipulating thought and 
reasoning. Words (and larger verbal constructions) 
become not simply ways to communicate our preexisting 
thoughts but highly flexible (and metabolically cheap) 
sources of priors throughout the neural hierarchy. This is 
accomplished both through flexible modification of what 
top-down information is brought to bear and by selec-
tively influencing the precision weighting of prediction 
error, thereby influencing how much top-down informa-
tion influences specific lower-level level processes. This 
enables language to act as an “artificial context,” helping 
constrain what representations are recruited and what 
impact they have on reasoning and inference.

By serving as a domain-general prior-setting tool, words 
and larger constructions thus afford a kind of flexible “pro-
gramming language” for the mind (Lupyan & Bergen, in 
press), potentially providing a huge boost to intelligence.4 
As expected on such a position, language is persistently 
linked to an enormous range of behaviors. To take one 
example, vocabulary size and other verbal measures are 
surprisingly good predictors of performance on “nonverbal” 
intelligence tests such as Raven’s Progressive Matrices (e.g., 
Cunningham & Stanovich, 1997), while linguistic impair-
ments are linked to marked deficits (Baldo, Bunge, Wilson, 
& Dronkers, 2010).

In sum, we propose that the learning of language may 
create a potent means of biasing the recruitment of prior 
knowledge and of artificially manipulating, at any level of 
processing, the weightings that determine the relative 
influence of different top-down expectations and incom-
ing sensory signals. These manipulations could selectively 
enhance or mute the influence of any aspect, however 
subtle or complex, of our own or another agent’s world 
model. Exposure to language (whether shared or self-pro-
duced) thus becomes a potent and fundamentally unified 
means of exploring and exploiting the full potential of our 
own acquired knowledge about the world—a kind of arti-
ficial “second system” enabling us to take full advantage of 
our own knowledge as well as the knowledge of others.
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Notes

1. To be clear, the brain is no more “trying” to predict than a 
gas at a higher pressure tries to diffuse to a lower pressure. 
Living systems can temporarily resist such increases in entropy 
by avoiding some environments and altering others. Organisms 
that can predict their own sensory inputs at multiple spatial 
and temporal scales are well placed to do this, thus maintain-
ing themselves within their species-specific window of viability 
(Friston & Stephan, 2007).
2. Such findings are consistent with claims from the field of 
embodied cognition that words activate neural patterns over-
lapping with those activated by nonverbal sensory inputs 
(Lupyan & Bergen, in press, for discussion).
3. This claim is not limited to superordinate terms such as “vehi-
cle” and holds at any level of abstraction. Experiences with a 

 by guest on August 15, 2015cdp.sagepub.comDownloaded from 

http://cdp.sagepub.com/


284 Lupyan, Clark

dog, the color red, an instance of on-ness, or your brother Bob 
are all particulars. The corresponding terms (“dog,” “red,” “on,” 
“Bob”) abstract over the particulars in a way that perception 
cannot.
4. The role of language in intelligence is taken for granted 
in much of classical and contemporary philosophy of mind, 
though without much elaboration of mechanism. In contrast, 
as noted above, major strands of contemporary cognitive sci-
ence and developmental psychology dismiss language as being 
purely a tool for communication.

References

Anderson, B. (2011). There is no such thing as attention. 
Frontiers in Theoretical and Philosophical Psychology, 2, 
Article 246. Retrieved from http://journal.frontiersin.org/
article/10.3389/fpsyg.2011.00246/full

Baldo, J. V., Bunge, S. A., Wilson, S. M., & Dronkers, N. F. 
(2010). Is relational reasoning dependent on language? A 
voxel-based lesion symptom mapping study. Brain and 
Language, 113, 59–64. doi:10.1016/j.bandl.2010.01.004

Boroditsky, L. (2010). How the languages we speak shape 
the ways we think: The FAQs. In M. J. Spivey, K. McRae, 
& M.   Joanisse (Eds.), The Cambridge handbook of psy-
cholinguistics (pp. 615–632). New York, NY: Cambridge 
University Press.

Boutonnet, B., & Lupyan, G. (2015). Words jump-start vision: 
A label advantage in object recognition. The Journal of 
Neuroscience, 32, 9329-9335.

Brown, H., & Friston, K. J. (2012). Free-energy and illusions: 
The Cornsweet effect. Frontiers in Psychology, 3, Article 43. 
Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3289982/

Casasanto, D. (2008). Who’s afraid of the big bad Whorf? 
Crosslinguistic differences in temporal language and 
thought. Language Learning, 58, 63–79.

Clark, A. (2013). Whatever next? Predictive brains, situated 
agents, and the future of cognitive science. Behavioral & 
Brain Sciences, 36, 181–204.

Çukur, T., Nishimoto, S., Huth, A. G., & Gallant, J. L. (2013). 
Attention during natural vision warps semantic represen-
tation across the human brain. Nature Neuroscience, 16, 
763–770. doi:10.1038/nn.3381

Cunningham, A. E., & Stanovich, K. E. (1997). Early reading 
acquisition and its relation to reading experience and abil-
ity 10 years later. Developmental Psychology, 33, 934–945.

Den Ouden, H. E. M., Kok, P., & de Lange, F. P. (2012). How pre-
diction errors shape perception, attention, and motivation. 
Frontiers in Psychology, 3, Article 548. Retrieved from http://
journal.frontiersin.org/article/10.3389/fpsyg.2012.00548/full

Elman, J. L. (2009). On the meaning of words and dinosaur 
bones: Lexical knowledge without a lexicon. Cognitive 
Science, 33, 547–582. doi:10.1111/j.1551-6709.2009.01023.x

Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, 
and free-energy. Frontiers in Human Neuroscience, 4, 
Article 215. Retrieved from http://journal.frontiersin.org/
article/10.3389/fnhum.2010.00215/full

Friston, K. J. (2010). The free-energy principle: A unified 
brain theory? Nature Reviews Neuroscience, 11, 127–138. 
doi:10.1038/nrn2787

Friston, K. J., & Stephan, K. E. (2007). Free-energy and the 
brain. Synthese, 159, 417–458.

Gleitman, L., & Papafragou, A. (2005). Language and thought. 
In K. Holyoak & B. Morrison (Eds.), Cambridge handbook 
of thinking and reasoning (pp. 633–661). New York, NY: 
Cambridge University Press.

Hinton, G. E. (2007). Learning multiple layers of representation. 
Trends in Cognitive Sciences, 11, 428–434. doi:10.1016/j 
.tics.2007.09.004

Hohwy, J. (2013). The predictive mind. New York, NY: Oxford 
University Press.

Lupyan, G. (2012). What do words do? Towards a theory 
of language-augmented thought. In B. H. Ross (Ed.), 
The psychology of learning and motivation (Vol. 57, 
pp. 255–297). Waltham, MA: Academic Press. Retrieved 
from http://www.sciencedirect.com/science/article/pii/
B9780123942937000078

Lupyan, G. (2015). Cognitive penetrability of perception in the 
age of prediction: Predictive systems are penetrable sys-
tems. Review of Philosophy and Psychology. Advance online 
publication. doi:10.1007/s13164-015-0253-4

Lupyan, G., & Bergen, B. (in press). How language programs 
the mind. Topics in Cognitive Science.

Lupyan, G., Rakison, D. H., & McClelland, J. L. (2007). Language 
is not just for talking: Labels facilitate learning of novel cat-
egories. Psychological Science, 18, 1077–1082.

Lupyan, G., & Thompson-Schill, S. L. (2012). The evocative 
power of words: Activation of concepts by verbal and non-
verbal means. Journal of Experimental Psychology-General, 
141, 170–186. doi:10.1037/a0024904

Lupyan, G., & Ward, E. J. (2013). Language can boost other-
wise unseen objects into visual awareness. Proceedings of 
the National Academy of Sciences, USA, 110, 14196–14201. 
doi:10.1073/pnas.1303312110

Malt, B. C., Gennari, S. P., Imai, M., Ameel, E., Saji, N., & 
Majid,  A. (2015). Where are the concepts? What words can 
and can’t reveal. In E. Margolis & S. Laurence (Eds.), The 
conceptual mind: New directions in the study of concepts 
(pp. 291–326). Cambridge, MA: MIT Press.

McClelland, J. L. (2013). Integrating probabilistic models of 
perception and interactive neural networks: A historical 
and tutorial review. Frontiers in Psychology, 4, Article 503. 
Retrieved from http://journal.frontiersin.org/article/10.3389 
/fpsyg.2013.00503/full

McClelland, J. L., Mirman, D., Bolger, D. J., & Khaitan, P. (2014). 
Interactive activation and mutual constraint satisfaction in 
perception and cognition. Cognitive Science, 38, 1139–
1189. doi:10.1111/cogs.12146

Pinker, S. (1994). The language instinct. New York, NY: Harper 
Collins.

Pylyshyn, Z. (1999). Is vision continuous with cognition? The 
case for cognitive impenetrability of visual perception. 
Behavioral & Brain Sciences, 22, 341–365.

Snedeker, J., & Gleitman, L. (2004). Why is it hard to label our con-
cepts? In D. G. Hall & S. R. Waxman (Eds.), Weaving a lexicon 
(Illustrated ed., pp. 257–294). Cambridge, MA: MIT Press.

von Helmholtz, H. von. (2005). Treatise on physiological optics 
(Vol. 3, J. P. C. Southall, Ed.). New York, NY: Dover. 
Original translation published 1924, original work pub-
lished 1867

 by guest on August 15, 2015cdp.sagepub.comDownloaded from 

www.sciencedirect.com/science/article/pii/B9780123942937000078
www.sciencedirect.com/science/article/pii/B9780123942937000078
http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00503/full
http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00503/full
http://journal.frontiersin.org/article/10.3389/fpsyg.2011.00246/full
http://journal.frontiersin.org/article/10.3389/fpsyg.2011.00246/full
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289982/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289982/
http://journal.frontiersin.org/article/10.3389/fnhum.2010.00215/full
http://journal.frontiersin.org/article/10.3389/fnhum.2010.00215/full
http://cdp.sagepub.com/

