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Recognising a zebra from its stripes and the stripes from “zebra”: the role of
verbal labels in selecting category relevant information
Lynn K. Perrya and Gary Lupyanb

aDepartment of Psychology, University of Miami, Coral Gables, FL, USA; bDepartment of Psychology, University of Wisconsin-Madison, Madison,
WI, USA

ABSTRACT
Distinguishing members from non-members of some categories can be accomplished by
identifying one or several diagnostic features (e.g. zebra-stripes are diagnostic of zebras). Other
categories lack diagnostic features (e.g. dogs). Consequently, distinguishing members from non-
members requires attending to many correlated dimensions. Interestingly, children and non-
human animals are less adept at using diagnostic features compared to adults – possibly due to
adults’ more developed verbal labelling abilities. We examined whether recognition of categories
with diagnostic features (“sparse” categories) is (1) linked to better abilities to selectively attend
to relevant information and (2) aided by labelling. In Experiments 1–2, we quantify and validate
a measure of category sparsity. Experiment 3 demonstrates that sparse categorisation, assessed
by an implicit naming task, correlates with performance in the flanker task, a measure of
selective attention. Experiment 4 demonstrates up-regulating activity over Wernicke’s area via
transcranial direct current stimulation – hypothesised to enhance labelling – selectively improves
sparse categorisation.
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Because no two perceptual inputs are ever exactly the
same, recognising an input as being the “same” as a pre-
vious input, is an act of categorisation. Categorisation
can be thought of as the process by which an input is
aligned in some way with that of previously encountered
members of the same category. Properties relevant for
the category become highlighted, while properties irrele-
vant are abstracted over. For example, recognising an
object as a cup involves representing it so that aspects
of its shape, size, and material are highlighted, while
colour – a property uninformative of cup-ness – is
(partly) abstracted over. This process has often been
called “selection” and parallels have been drawn
between selection of task-relevant information in per-
ception (e.g. attending to horizontal vs. vertical forms,
or to colour and not to shape), and selection in the con-
ceptual domain (e.g. thinking of a knife as something
that is usually made of metal rather than as something
that is sharp (e.g. Kan & Thompson-Schill, 2004). In
both cases, “selection” (indeed, selective attention
itself) can be thought of more generally as a warping
of a representation (a distributed neural activation
pattern) into a task-relevant form.1 Here, we focus on a
subset of categorisation – categorisation in the service
of naming. Naming an object, for example, naming a

chair as a “chair” requires categorising it at what is
often called a basic level, selectively representing those
features relevant to being a chair and (temporarily)
down-weighting features irrelevant to chair-ness.

The role of labelling in categorisation

It is easy to see how naming depends on categorisation.
But there is accumulating evidence that categorisation
also depends on naming. For example, named categories
are easier to learn (Balaban & Waxman, 1997; Lupyan,
Rakison, & McClelland, 2007; Nazzi & Gopnik, 2001;
Perry & Samuelson, 2013; Plunkett, Hu, & Cohen, 2008).
Once a category is learned, the knowledge of its attri-
butes is more effectively activated by a verbal label
than other highly associated cues, such as nonlinguistic
sounds (Boutonnet & Lupyan, 2015; Lupyan & Thomp-
son-Schill, 2012). Consistent with the possibility of a
causal involvement of labels in categorisation, language
impairments (in particular, naming impairments such as
aphasia) produce categorisation impairments (Gainotti,
2014; Lupyan & Mirman, 2013 for review), and interfering
with language in healthy adults impairs categorisation
(Lupyan, 2009). Taken together, these findings suggest
that labels help to reify categories by selectively
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activating critical features and abstracting over irrelevant
ones (see Lupyan, 2012b for discussion and a compu-
tational model).

Importantly, the influence of verbal labels on categor-
isation appears to interact with the structure of the cat-
egory. While there are many ways of measuring
category structure, we focus here on the number of fea-
tures/dimensions that category members have in
common, what we will refer to as category sparsity. The
construct of category sparsity is well-summarised by
Sloutsky (2010, pp. 1250–1251):

Categories that are statistically dense have multiple
intercorrelated (or covarying) features relevant for cat-
egory membership, with only a few features being irrele-
vant. Good examples of statistically dense categories are
basic-level animal categories such as cat or dog. Cat-
egory members have particular distributions of values
on a number of dimensions (e.g. shape, size, color,
texture, number of parts, type of locomotion, type of
sounds they produce, etc.). These distributions are
jointly predictive, thus yielding a dense (albeit probabil-
istic) category. Categories that are statistically sparse
have very few relevant features, with the rest of the fea-
tures varying independently. Good examples of sparse
categories are dimensional groupings (e.g. “round
things”), relational concepts (e.g. “more”), scientific con-
cepts (e.g. “accelerated motion”), or role-governed con-
cepts (e.g. cardinal number).

Deciding what should count as a feature or dimension
is not at all straightforward,2 and so we will be fairly non-
committal about the exact meaning of these terms. An
example of what we mean by a dense category is some-
thing like BIRDS

3 – categories whose members share
many properties but cannot be distinguished based on
any single feature (what Lupyan, Mirman, Hamilton, &
Thompson-Schill, 2012 called high-dimensional cat-
egories; see also Pothos, 2005). A paradigmatic
example of a sparse category is RED-THINGS.

Such sparse categories (sometimes also called “rule-
based” categories) have been shown to present substan-
tial learning difficulties for non-human animals (e.g.
Couchman, Coutinho, & Smith, 2010) and young children
(Kloos & Sloutsky, 2008; Minda, Desroches, & Church,
2008a) who, when given a choice, tend to default to a
more dense similarity-based category structure (e.g.
Smith & Kemler, 1977). Ashby, Maddox, and colleagues
have argued that learning categories organised by
overall similarity (i.e. dense categories) utilises more
automatic processes while learning rule-based cat-
egories (i.e. sparse categories) places more demands
on abilities to selectively represent relevant features
(see e.g. Ashby & Maddox, 2011; Minda & Miles, 2010).
Thus, selective representation demands, or the need to
represent a small amount of task-relevant information

to the exclusion of irrelevant information should be
greater for sparse categorisation.

It is interesting then that verbal labelling has been
linked specifically to sparse categorisation. For
example, verbal interference impacts the ability to cat-
egorise based on a specific feature (e.g. size), but not
on more global properties (Lupyan, 2009). Similarly,
people with naming impairments show problems with
categorising based on specific features such as ANIMALS

WITH STRIPES or OBJECTS THAT ARE ROUND, but are similar to
controls on dense such as BIRDS (e.g. Lupyan & Mirman,
2013). Young children struggle with sparse categoris-
ation, but providing them with novel category labels
can facilitate their learning of such categories (Perry &
Samuelson, 2013). In contrast, under normal circum-
stance, adults, are strongly biased to use sparse categor-
isation (e.g. Couchman et al., 2010; Minda et al., 2008a).
Down-regulation of neural activity over Wernicke’s area
using transcranial direct current stimulation (tDCS) (as a
means of inhibiting neural processing involved in
naming (see e.g. Price, 2000)) tends to promote
forming a more dense category structure (Perry &
Lupyan, 2014). Taken together, evidence from studies
of children, typical adults, and adults with aphasia,
suggest that labelling supports the ability to represent
sparse categories.

However, it has remained unclear why such a link
might exist between labelling and sparse categorisation
and what processes underlie recognition of sparse cat-
egories. The current studies are designed to begin
answering these two questions. First, are selective rep-
resentation demands greater for sparser as compared
to denser categories? Second, are category labels more
helpful for recognising members of sparse categories
(perhaps due to the greater need for selective represen-
tation such categories require)?

Rather than using contrived categories like those in
much of past work (Couchman et al., 2010; Kloos &
Sloutsky, 2008; Maddox, Glass, O’Brien, Filoteo, &
Ashby, 2010; Minda, Desroches, & Church, 2008b; Perry
& Lupyan, 2014), we used common animal and artefact
categories varying in sparsity. For example, DOG is a
fairly dense category – there is no feature that is
shared by all dogs and that distinguishes dogs from
non-dogs. In contrast, ZEBRA is a sparser category in
that members have a salient feature (zebra-stripes) that
is shared by all the members and can be often used to
distinguish zebra from non-zebras.

We address the first question by examining whether
individual differences in performance on a nonlinguistic
selective attention task relate to individual differences in
performance on a picture-word verification task that
measures speed of implicit naming. We address the
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second question by modulating processes involved in
labelling4 using tDCS and examining how this modu-
lation affects performance on (implicitly) naming of
members of sparser vs. denser categories.

Rationale for present work

The ability to represent task-relevant information is
critical to a variety of tasks (often studied within the dis-
ciplines of “cognitive control” and “executive function”)
(see Banich, 2009; Kan & Thompson-Schill, 2004) and
varies considerably across individuals even within a
typical population (e.g. Vogel, McCollough, & Machi-
zawa, 2005). We reasoned that if categorising
members of sparser categories like ZEBRA requires repre-
senting items in a more selective way relative to cate-
gorising members of denser categories like DOG, then
people who perform better on nonverbal tasks requir-
ing selection may be relatively better at categorising
items from sparser categories. In Experiments 1 and 2,
we determine the sparsity of 12 familiar categories to
use as stimuli and validate our measure of category
sparsity. In Experiment 3, we related individuals’ per-
formance on the flanker congruity task (see Figure 1)
– commonly used to study selection processes (see
Eriksen, 1995) – to individual differences in a picture-
word verification task (see Figure 2), a measure of
implicit naming.

If labelling helps to support selective representation
of category-relevant information, and if selective rep-
resentations are more critical for recognising members
of sparse categories like ZEBRA than members of dense
categories like DOG, then manipulating the ease with
which people can label may impact the recognition of
members from sparse categories compared to
members from dense categories. In Experiment 4, we
manipulated the labelling process by using tDCS (Perry
& Lupyan, 2013). Specifically, we examined effects of
up- and down-regulating activity over Wernicke’s area
via tDCS on verification of picture names. We predicted
that if labelling supports selective representation, then

up-regulating activity over Wernicke’s area should facili-
tate recognition of sparse categories while down-regu-
lating activity should impair it.

Experiment 1: stimulus selection and norming

The primary goal of Experiment 1 was to quantify cat-
egory sparsity for the materials used in our picture-
word verification tasks (Experiments 2–4). The pictures
were photographs obtained from online image collec-
tions. We selected 12 picture categories which had
basic-level names of approximately equal frequencies
(based on American National Corpus written frequency
norms, Reppen, Ide, & Suderman, 2005), and which had
approximately equal concreteness (based on Medical
Research Council psycholinguistic database norms,
Wilson, 1988) (see Table 1 for stimulus characteristics).
We next recruited 59 English-speaking adults from
Amazon Mechanical Turk and asked them to do one of
three tasks: a commonality-listing task, a name agree-
ment task, or a typicality-rating task.

Measuring category sparsity

One way to quantify category sparsity is by asking par-
ticipants to list common attributes of category
members. We reasoned that insofar as a given feature
is central to a category, it will be readily identified by
participants tasked with telling us what all the
members of a given category have in common. We pre-
sented 15 participants with 10 pictures of items from
each of the 12 categories and asked them to list the fea-
tures that all the items from a given category had in
common. Category sparsity was defined as the

Figure 1. Sample trial types in the flanker task. Participants’ task
is to report the direction (left, right) of the central triangle.

Figure 2. Schematic of stimuli presentation in picture-word ver-
ification task. A picture was followed by a word which partici-
pants judged, as quickly as possible, as matching or not
matching the image.
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Table 1. The most frequently listed commonality and the proportion of the participants in the norming study listing that commonality for each category used in the picture-word verification
task (used as a proxy for category sparsity in our analyses).

Category

Most frequently listed
commonality (based on
mTurk commonality-

listing study)

Category sparsity (sparse
to dense; proportion of
mTurk participants listing

most frequent
commonality)

Average name
agreement (based
on mTurk name
agreement study)

Average typicality
(based on mTurk

typicality study; 1–7
scale, 1 = low, 7 =

high)

Log word frequency
(based on American
National Corpus
written frequency

norms)

Concreteness
(based on Nelson
et al., 2004; 1–7
scale, 1 = low, 7 =

high) Kind
Feature
foil

Semantic
foil

Association strength
between target

category and semantic
foil (Nelson et al.,

2004)

Carrot Colour 1.00 .97 3.62 2.05 6.19 Natural
kind

Pumpkin Rabbit .21

Hand Fingers .80 .98 4.08 3.62 5.60 Natural
kind

Glove Foot .16

Zebra Pattern .77 1.00 4.42 1.32 6.52 Natural
kind

Zebra coat Horse .19

Ball Shape .67 .99 3.02 3.14 6.18 Artefact Orange Bat .19
Brush Bristles .45 .92 3.44 2.36 5.66 Artefact Porcupine Hair .44
Spoon Handle .43 1.00 3.54 1.94 5.80 Artefact Doctor’s

hammer
Bowl <.01

Apple Shape .38 1.00 4.45 2.72 7.00 Natural
Kind

Globe Banana .02

Phone Buttons/numbers .30 .86 2.72 3.40 6.02 Artefact Calculator Walkie
Talkie

<.01

Desk Wood .29 1.00 2.54 2.77 5.79 Artefact Dresser Chair .29
Bird Feathers .13 .97 2.58 2.81 5.77 Natural

kind
Feather
duster

Nest .06

Dog Four legs .13 .97 3.80 3.27 5.75 Natural
kind

Cow Cat .67

Purse Handles .10 .82 3.54 2.06 5.64 Artefact Bucket Wallet .20

4
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proportion of participants listing this common feature
(see Table 1). For example, if all participants were to
list a single common feature for all the items in the cat-
egory, that category would be maximally sparse with a
score of 15/15 or 1.0. Conversely, if each participant
listed a different single common feature for all items
in the category, that category would be maximally
dense and have a category sparsity score of 1/15,
.067. Nonsensical answers (e.g. responding “yes”
instead of providing an attribute) were excluded
(approximately 7% of responses).

Name agreement task

The purpose of the name agreement task was to ensure
that the category labels we used were appropriate. Partici-
pants were presented with pictures of 10 exemplars from
each of the 12 categories, one exemplar at a time, and
asked to name each picture. Name agreement was
quantified as the proportion of participants listing the
same name for each picture. To count as the same,
responses had to be identical. Plurals, synonyms, and
other variations were not accepted. The five exemplars
from each category with the highest name agreement
were used in the picture word verification task. Average
name agreement was 96% (see Table 1 for full listing).

We collected name agreement primarily to help us
select pictures for use in the study, but we additionally
sought to ensure that name agreement was not con-
founded with category sparsity. Average name agree-
ment was positively, though not significantly correlated
with the category sparsity of our stimuli, r(10) = .41, p
= .24.

Typicality

Typicality is a well-known predictor of categorisation/
naming speed (Rosch & Mervis, 1975; Rosch, Simpson,
& Scott, 1976), and therefore it was important to rule
out the possibility that effects of category sparsity were
confounded by typicality. We collected typicality
ratings for all pictures by presenting each item one at a
time, and asking participants to rate its typicality by
responding to the following prompt: “On a scale of 1
to 5, with 1 being the least typical and 5 being the
most, how typical is this [dog] of [dogs] in general?”
Mean category typicality correlated positively, r(10)
= .40, p = .26, though not-reliably, with category sparsity;
see Table 1.

The goal of Experiment 1 was to obtain a measure of
category sparsity for our picture verification stimuli. In
Experiment 2 we validate our measure of category spar-
sity using a picture-word verification task.

Experiment 2: validating category sparsity

The goal of Experiment 2 was to validate our measure of
category sparsity. If categories for which participants
were most likely to list only a few relevant features (e.
g. stripes for the category of ZEBRAS) are represented in
a way that accentuates that feature, then participants
should have some trouble rejecting non-category
members that share that property (e.g. rejecting an
image of a woman wearing a zebra-striped coat when
prompted by “zebra”). In contrast, because no one
feature is critical to membership in a dense category
such as PURSE, participants should have little trouble
rejecting feature-based foils such as a bucket (even
though purses and buckets both have handles), though
they may be slowed to reject more general similarity-
based foils (e.g. a wallet). To test this prediction we con-
ducted a picture-word verification task designed to
assess difficulty in rejecting different types of foils for cat-
egories varying in sparsity.

Participants

Eighteen monolingual English-speaking undergraduates
participated for course credit.

Methods

On each trial participants heard one of the words listed in
Table 1 (e.g. “zebra”) followed by a picture from one of
the matching or non-matching categories. The task was
to press a “match” button if the picture matched the
word, which it did on 45% of the trials, and a mismatch
button otherwise. On match trials, the picture was one
of the five exemplars per category selected based on
the judgments in the name agreement task. On the
remaining trials, participants saw either a feature-based
or semantic-based foil that they had to reject. Feature
foils were pictures of categories that shared a common
feature with the target category based on the most com-
monly listed feature in the commonality-listing task. For
example, for ZEBRA, the feature foil was a woman wearing
a zebra-striped coat (critical feature: stripes), for purse it
was a bucket (critical feature: handle). Semantic foils
were pictures of categories that shared a general seman-
tic relationship to the target category, without depicting
the critical feature. We selected the most strongly associ-
ated imageable category based on word association
norms (Nelson, McEvoy, & Schreiber, 2004). For
example, the semantic foils for “zebra” and “purse” were
pictures of a horse and a wallet, respectively (see Table
1 for complete list). Because the different categories
varied in the extent to which the semantic foil and
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feature foil related to the target, we included semantic
association strength (associative strength between the
target and semantic foil from based on Nelson et al.,
2004 norms) as a covariate in our analyses. In our
stimuli, semantic association strength was positively,
though not significantly correlated with category spar-
sity, r(10) = .25, p = .44. We selected three exemplars of
each foil category from online image collections. Each
of the 12 category labels was presented 11 times for a
total of 132 trials.

Analytic approach

All analyses in this experiment were conducted using
mixed effects regression models. Reaction time analyses
were conducted using linear mixed models. To deter-
mine the best-fit model, we used chi-square tests com-
paring models with and without the factor of interest.
For interactions, we report coefficients and confidence
intervals from the full model, and the chi-square test of
model fit from the comparison to a model with the inter-
action removed. For main effects, we report coefficients
and confidence intervals from the full model, and the
chi-square test of model fit from the comparison to a
model with the predictor main effect removed. To deter-
mine appropriate random effects, we began with com-
pletely specified random effects structures including
random slopes for all variables in a given model. Using
model comparison, we systematically removed uninfor-
mative random effects (Jaeger, 2009). Unless otherwise
specified, final models included random intercepts for
subjects and items. Factors were centered (e.g. ±0.5).

All final models are listed in the appendix and referenced
by number in the main manuscript (e.g. M1a).

Results and discussion

Our first analysis examined the interaction between cat-
egory sparsity, foil type, and semantic association
strength on RTs. The full model included the interaction
between semantic association strength (a continuous
measure rather than a median split was used in all ana-
lyses), category sparsity, and foil type (feature vs. seman-
tic) and main effects of semantic association strength,
category sparsity, and foil type for mismatch trials
(Appendix M1a). There was a marginally significant
two-way interaction between foil type and category
sparsity b =−256, CI95% = [−423, −91], χ2(1) = 2.74, p
= .098 such that participants were generally slower to
reject feature-based foils for sparse than dense cat-
egories but were not affected by category sparsity for
semantic-based foils. There was no interaction between
foil type and semantic association strength, b =−239,
CI95% = [−440, −38]; χ2(1) = .10 p = .76 or between cat-
egory sparsity and semantic association strength, b =
−145, CI95% = [−1252, 963]; χ2(1) = .67, p = .41. There
were no main effects of category sparsity, b = 64, CI95%
= [−179, 307]; χ2(1) = .03, p = .86; foil type, b = 80, CI95%
= [19, 142]; χ2(1) = .03, p = .87; or semantic association
strength, b = 98, CI95% = [−196, 392]; χ2(1) = .73, p = .39
(see Appendix M1a)5. However, as can be seen in
Figure 3, there was also a three-way interaction such:
speed to reject foils on feature vs. semantic foil trials
varied as a function of semantic association strength
and category sparsity, b = 997, CI95% = [241, 1752], χ2(1)
= 6.69, p = .01.

To examine this three-way interaction, we looked at
the interaction between category sparsity and foil-type
separately for the categories that had relatively low
association strength with their semantic foils (see right-
most column of Table 1) and those with higher semantic
strength. For categories having low semantic strength
between targets and semantic foils, there was no main
effect of foil type, χ2(1) = 1.81, p = .18, a marginal effect
of category sparsity, b = 189, CI95% = [65, 315], χ2(1) =
2.79, p = .09 (Appendix M1b) and a significant interaction
between category sparsity and foil type, b =−187, CI95%
= [−290, −85], χ2(1) = 12.66, p = .0004 (Figure 3 – left).
Feature foils were harder to reject from sparse categories
compared to dense categories, b = 187, CI95% = [99, 276],
χ2(1) = 8.16, p = .004 (Appendix M1c). For example, par-
ticipants were slower to reject a striped coat from the
category zebra (sparser category) compared to a
feather duster from the category bird (denser category)
Participants rejected semantic-similarity foils with equal

Figure 3. Time (ms) to correctly reject a foil in the sparsity vali-
dation study. Category sparsity is represented from left to right as
dense to sparse based on the highest proportion of participants
in the norming study listing the same commonality. Note: Error
bands depict standard error of predicted means.
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speeds regardless of category sparsity, χ2(1) = .003, p
= .95 (Appendix M1d).

For categories having relatively high semantic associ-
ation strength between targets and semantic foils there
were no main effects of category sparsity, χ2(1) = 1.04,
p = .31, or foil type, χ2(1) = 2.09, p = .15, and no significant
interaction between category sparsity and foil type, χ2(1)
= 1.26, p = .26 (Appendix M1e).

Together these findings demonstrate that rejecting a
feature-based foil (e.g. rejecting a striped coat as not
being a zebra) is more difficult for sparse categories
(for which the feature is proposed to be highly relevant)
than dense (where the feature is one of many relevant
features). This effect of sparsity was only observed for
categories lacking strong semantic associates (based
on association norms: Nelson et al., 2004) (Figure 3 –
left). Nonetheless, because none of the categories we
use are strongly associated with one another, we take
these results to validate our measure of sparsity for use
in Experiments 3 and 4.

Experiment 3

The goal of Experiment 3 was to examine the extent to
which individual differences in recognising familiar
objects from sparse and dense categories relate to indi-
vidual differences in selective representation. To this
end, we correlated people’s performance on a picture-
word verification task and a flanker task.

The picture-word verification task measures speed of
implicit naming. Participants who are best at represent-
ing information in a selective way should show an advan-
tage for verifying the names of sparse category
members. The flanker task required participants to indi-
cate the direction of a central target while ignoring irre-
levant distractors on either sides (flankers) (see Figure 1).
Participants generally show an advantage (faster RTs
and/or higher accuracy) on trials in which the target
and flankers face the same way (congruent trials) and a
cost (slower RTs and/or lower accuracy) on incongruent
trials, suggesting a difficulty in ignoring irrelevant infor-
mation. Differences in the size of participants’ cost/
advantage can be interpreted as reflecting an ability to
selectively represent the target stimulus/response (see
Cagigas, Filoteo, Stricker, Rilling, & Friedrich, 2007;
Eriksen, 1995; Roberts, Anderson, & Husain, 2010). Partici-
pants who are best at representing information in a
selective way should show the least facilitation of con-
gruent flankers and the least interference of incongruent
flankers. We reasoned that people who show the most
selective processing in the flanker task (as measured by
the size of their congruent advantage and/or incongru-
ent cost) will be faster to recognise pictures belonging

to sparse categories than participants with less selective
(more “integrative”) processing.

Methods

Participants
Thirty-six monolingual English-speaking undergraduates
participated for course credit.

Picture-word verification task
On each trial, participants saw a picture of a familiar
object or animal presented on a computer screen,
heard a familiar label, and responded via button press
whether the label matched the picture (see Figure 2).
Participants received auditory feedback: a bell for
correct responses and a buzz for incorrect responses.
Note that unlike Experiment 2, the word now followed
rather than preceded the image. This allowed us to
measure the extent to which viewing the image activates
its name. Across the experiment, each picture was pre-
sented six times in a random order, for a total of 360
trials. The auditory label matched the picture on half of
the trials. On the remaining mismatch trials, the label
was randomly selected from one of the other categories.
All labels were recorded by a female speaker, and all
sound files were length-normalised to 750 ms. Presen-
tation of labels followed presentation of pictures after a
delay of 200, 300, or 600 ms. Each delay interval was
used twice for each exemplar – once when the label
and picture matched, and once when they did not. We
anticipated that if participants are implicitly naming the
pictures (or to put it more passively, if the pictures auto-
matically activate their names), then the more time par-
ticipants have to generate a name, the faster their
responses will be once the name is played making veri-
fication RTs a good proxy for speed of picture-naming.
This kind of task has certain advantages over overt
naming tasks because unlike a naming response, there
is no ambiguity as to when a response has occurred.
The primary measure of interest was the difference in
speed with which people implicitly named pictures
from categories of varying sparsity. Verification response
times were measured relative to label onset.

Flanker congruity task
Participants next completed a version of a flanker task (e.
g. Eriksen, 1995). Each trial began with a fixation cross
(700–900 ms.) followed by a target and flanker display
containing seven small triangles, as shown in Figure 1.
The participants’ task was to report the direction of the
central target. Trials were evenly split among three
types: on congruent trials, the target and flankers all
faced the same direction. On incongruent trials, the
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target faced opposite the flankers. We also included
neutral trials on which the flankers faced upward.
Because “up” is not a possible response, upward facing
flankers are predicted to interfere minimally with
responding to the direction of the target. The neutral
trials served as a baseline allowing us to distinguish
between a congruent advantage and an incongruent
cost. The trials were additionally split between three
delay conditions: simultaneous presentation (standard
flanker display), and flanker-first presentation in which
the flankers preceded the target by 150 or 500 ms. A
longer flanker-to-target delay provides additional time
during which people can attempt to selectively attend
to the central location in which the target will appear
and perhaps inhibit the processing of the irrelevant flan-
kers. As the delay between the onset of the flankers and
the onset of the target is increased, the detrimental influ-
ence of the incongruent flankers should decrease and
the effect of seeing response-congruent flankers may
increase (for review see Botella, Barriopedro, & Joula,
2002). Examining performance on delay trials allowed
us to examine individual differences in selectivity with
respect to difficulties in ignoring incongruent infor-
mation, ignoring congruent (though still irrelevant) infor-
mation, and the change to this selectivity as a function of
time. Participants completed a total of 270 trials with all
trial types intermixed. Incorrect responses were signalled
by a buzzing sound.

The primary measures of interest in the flanker task
were the difference in speed and accuracy of identifying
the target in the presence of various flankers (distrac-
tors). Less selective representation of the target is
expected to lead to increased difficulty in responding
when the flankers do not match the target and faster
or more accurate responding when they do match the
target.

Analytic approach

We first report the results for each task separately and
then examine the relationship between them. All ana-
lyses were conducted using mixed effects regression
models. Reaction time analyses were conducted using
linear mixed models and accuracy analyses were con-
ducted using logistic mixed models. Best fit models
and best random effects structure were determined in
the same manner as in Experiment 2. All models of
picture-word verification include random effects of
subject and picture category. All models of flanker per-
formance include random effects of subject. Factors
were centered (e.g. ±0.5). All final models are listed in
the appendix and referenced by number in the main
manuscript (e.g. M1a).

Results and discussion

Picture-word verification RT performance
We first examined how category sparsity and the delay
between picture and label affected verification RTs. We
excluded incorrect trials and trials on which participants
responded faster than 150 ms or slower than 1500 ms
(approximately 4% of trials). The full model (Appendix
M2a) included the interaction between category sparsity
and delay length and main effects of category sparsity
and delay length. Participants responded more quickly
with increasing delays (200 ms delay: M= 678 ms; 300
ms delay: M= 648 ms; 600 ms delay: M= 617 ms), b =
−136, CI95% = [−171, −101], χ2 = 224, p < .00001. A parsi-
monious way to think about name-verification RTs
decreasing as the delay increased is that on seeing a
picture, participants automatically generate its name
and then compare it with the word they hear. There
was no main effect of category sparsity on RTs, χ2 = .90,
p = .34, and no interaction between delay and category
sparsity χ2 = .13, p = .72.

Picture-word verification accuracy
We next examined how category sparsity and delay
affected verification accuracy. The full model (Appendix
M2b) included the interaction between category sparsity
and delay length and main effects of category sparsity
and delay length. We again found an effect of delay, b
= 1, CI95% = [−.3, 2], χ2 = 9.16, p = .002. Participants were
faster to verify pictures with increasing delays. There
was no interaction between delay and category sparsity,
χ2 = .01, p = .92, nor a main effect of category sparsity, χ2

= .01, p = .93.
Overall, people’s recognition/naming of pictures was

independent of those pictures’ category structure, as
measured by our sparsity measure. The critical question
is whether performance on categories of varying sparsity
related to differences in performance on the flanker task.

Flanker congruency task performance
Our primary analysis examined how trial type and delay
affected responses to the target direction. We excluded
data from incorrect trials and trials on which participants
responded faster than 150 ms or slower than 1100 ms
(approximately 4% of trials). The full model (Appendix
M3a) included the interaction between trial type and
delay and main effects of trial type and delay. Our
basic flanker results were typical of this task: there was
an effect of trial type, χ2(2) = 456.84, p < .0001 such that
people were slower to respond on incongruent trials,
M= 504 ms, than on neutral, M= 460 ms, or congruent
trials, M= 450 ms, and an effect of delay length, χ2(2) =
1873.1, p < .0001, such that participants were overall
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faster to respond with increasing delays. However, as can
be seen in Figure 4(a), there was a significant trial-type by
delay interaction, χ2(2) = 25.29, p < .0001. Follow-up
models comparing performance on neutral trials to per-
formance on each of the other trial types revealed that
this interaction was driven by the incongruent cost
decreasing with the delay, b = 63, CI95% = [39, 87], χ2(1)
= 26.89, p < .001 (Appendix M3b) and the congruent
advantage increasing with the delay, b =−40, 95% CI =
[−64, −17], χ2(1) = 11.18, p = .0008 (Appendix M3c). Par-
ticipants were much slower on incongruent than
neutral trials on trials when the target and flanker
appeared simultaneously (simultaneous trials) and were
only slightly slower on incongruent than neutral trials
when the flankers appeared first (150 ms and 500 ms
delay trials). On the other hand, participants were only
faster on congruent than neutral trials when there was
a delay between target and flanker onset.

Turning now to an analysis of accuracy, our full model
(Appendix M3d) included the interaction between trial
type and delay and main effects of trial type and delay.
We found a significant effect of trial type, χ2(1) =
119.42, p < .0001, such that although participants were
overall equally accurate on congruent trials, M= .99,
and neutral trials, M= .99, they were slightly less
accurate on incongruent trials, M= .95. There was no sig-
nificant interaction between trial type and delay, χ2(2) =
3.23, p = .20 nor a significant effect of delay, χ2(1) = .20, p
= .66. In other words, unlike the RT cost, the accuracy cost
on incongruent trials did not decrease with greater
delays.

Individual differences in flanker effectiveness
To relate people’s flanker performance to their picture-
word verification performance we needed a way to
quantify the effectiveness of the flankers – the extent
to which incongruent flankers slowed people down
and/or the extent to which congruent flankers sped
people up. Each person’s congruent-trial advantage
was calculated by dividing their average RT on neutral
trials by their average RT on congruent trials during
sequential presentations. Each person’s incongruent-
trial RT cost was calculated by dividing their average RT
on incongruent trials by their average RT on neutral
trials during sequential presentations. We focused on
performance on sequential trials because we were inter-
ested in examining both the incongruent cost and the
congruent advantage, and although participants demon-
strated an incongruent cost at each delay length, they
only demonstrated an congruent advantage existed
only trials (a result typical of other flanker studies, e.g.
Botella et al., 2002).

The incongruent accuracy cost was calculated in the
same manner:

Congruent - trial RT advantage = Neutral

− trial RT/Congruent− trial RT, Incongruent

−trialRTcost= Incongruent− trialRT/Neutral− trialRT,

Incongruent - trial accuracy cost

= Incongruent− trialaccuracy/Neutral− trialaccuracy.

The size of a participant’s incongruent-trial cost and
congruent-trial advantage indicates the extent to which
they utilised more integrative or selective represen-
tations in the flanker task. If categorising objects belong-
ing to sparse categories (e.g. ZEBRA) requires a more
selective representation than categorising objects
belonging to dense (e.g. DOG), then participants who
were the most selective in the flanker task (i.e. those
who have a small incongruent-trial cost and/or small
congruent-trial advantage) should be faster to categorise
sparse categories than the participants who were the
least selective.

Relationship between flanker effectiveness and
picture-word verification

Congruent-trial advantage
We first examined how category sparsity and partici-
pants’ selectivity in the flanker task, as measured by con-
gruent-trial advantage size, affected verification RTs. The
full model included the interaction between category
sparsity and congruent-trial RT advantage, the inter-
action between category sparsity and congruent-trial
accuracy advantage and main effects of category spar-
sity, congruent-trial RT advantage, and congruent-trial
accuracy advantage (Appendix M4a). As can be seen in
Figure 4(b), there was a significant interaction between
category sparsity and congruent-trial RT advantage, b
= 198, CI95% = [1, 394], χ2(1) = 3.87, p = .049. People
showing a smaller congruent-trial RT advantage were
more likely to show an effect of category sparsity
(being faster to verify pictures from sparse than from
dense) than people showing a larger congruent-trial RT
advantage. There was no interaction between category
sparsity and congruent-trial accuracy advantage, χ2(1)
= .02, p = .87. There was no main effect of category spar-
sity, χ2(1) = .89, p = .34. Overall performance was likewise
not predicted by either the congruent-trial RT advantage,
χ2(1) = .68, p = .41 or the congruent-trial accuracy advan-
tage, χ2(1) = 2.38, p = .12.

The interaction between category sparsity and the
size of participants’ congruent-trial RT advantage in the
flanker task indicated that those with the best ability to
selectively represent relevant information in the flanker

LANGUAGE, COGNITION AND NEUROSCIENCE 9

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ia
m

i]
, [

L
yn

n 
Pe

rr
y]

 a
t 0

7:
21

 2
5 

A
pr

il 
20

16
 



task were also best at selectively representing relevant
information in sparse categorisation (as measured by
picture-word verification).

Incongruent-trial cost
We next examined how category sparsity and partici-
pants’ selectivity in the flanker task, as measured by
incongruent-trial cost size, affected verification accuracy.
The full model included the interaction between cat-
egory sparsity and incongruent-trial RT cost, the inter-
action between category sparsity and incongruent-trial
accuracy cost and main effects of category sparsity,
incongruent-trial RT cost, and incongruent-trial accuracy
cost (Appendix M4b). Figure 4(c) shows that there was a
marginal interaction between category sparsity and
incongruent-trial RT cost on verification accuracy, b = 7,
CI95% = [−.6, 15], χ2(1) = 3.51, p = .06 and a marginal inter-
action between category sparsity and incongruent-trial
accuracy cost, b = 6, CI95% = [−.6, 13], χ2(1) = 3.18, p
= .07. Participants with the largest costs (in RTs and in
accuracy) were slightly less accurate in verifying the
names of pictures from sparse categories. We also
found a significant main effect of incongruent-trial accu-
racy cost, b = 6, CI95% = [−.6, 13], χ2(1) = 10, p = .002, such
that participants with the largest costs were slightly less
accurate overall. There were no main effects of incongru-
ent-trial RT cost, χ2(1) = 2.06, p = .15 or of category spar-
sity, χ2(1) = .01, p = .93. Although participants were
overall quite accurate in both the flanker and the
picture-word verification tasks (Figure 4(c)), the small,
but systematic relationship between verification accu-
racy and the effect of incongruent flankers add to the

evidence from the congruent-trial advantage effect on
verification RTs (see Figure 4(b)). To summarise, those
with the best ability to selectively represent relevant
information in the flanker task were somewhat faster
and more accurate to categorise pictures from sparse
categories.

Conclusions
The results of Experiment 3 suggest that selective rep-
resentation demands are slightly higher for sparse than
dense categorisation – even for the categorisation of
highly familiar objects like zebras and carrots. Left
unclear, however, is what role, if any, language may
have in supporting this selective representation. In
Experiment 4, we examined whether perturbing neural
activity associated with labelling affects picture-word
verification with respect to the sparsity of the categories
to which pictures belong.

Experiment 4

If verbal labelling helps to selectively represent category-
relevant information, then manipulating the ease with
people can use labels should perturb this process. We
manipulated labelling through direct current stimulation
of Wernicke’s area (see Perry & Lupyan, 2013, 2014 for
rationale).

tDCS is a painless, noninvasive technique used to tem-
porarily alter cortical excitability through weak electrical
current to the scalp which is thought to affect cortical
excitability through changes in transmembrane potential
causing changes in spontaneous firing (Iyer et al., 2005;

Figure 4. (a) Average reaction time (ms) for each trial type and delay periods in the flanker task. Note: Error bars depict standard error of
the means with between-subject variance removed (Morey, 2008). (b) Picture-word verification reaction time (ms) based on category
sparsity and congruent advantage (in RTs) during sequential flanker presentations (delay 150 and 500 ms). (c) Picture-word verification
accuracy based on category sparsity and incongruent cost during sequential flanker presentations. “Below-median” and “above-
median” groups show performance of participants who have a below and above-median incongruent cost on sequential flanker
trials, respectively. Category sparsity is represented from left to right as dense to sparse based on the highest proportion of participants
in the norming study listing the same commonality. Note: Error bands depict standard error of predicted means.
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Nitsche & Paulus, 2000; Wagner et al., 2007). Placing the
cathode over the site of interest is generally thought to
decrease excitability; placing the anode is thought to
increase it (Nitsche & Paulus, 2000). tDCS over Wernicke’s
area has been previously used to in studies examining
the role of labelling in, for example, learning of novel cat-
egories (Perry & Lupyan, 2014). To explore whether label-
ling supports selective representation in categorisation
of even highly familiar objects, we asked whether
tDCS-induced differences in picture-word verification
mimic the individual differences found in Experiment 3.

Method

Participants
Twenty monolingual English-speaking undergraduates
participated for course credit. We randomly assigned
participants to one of two between-subjects conditions:
anodal-stimulation (n = 10), and cathodal-stimulation (n
= 10). Exclusion criteria included being left handed,
having a history of neurologic or psychiatric disease, or
use of anti-convulsants, anti-psychotic, or sedative
medications.

tDCS procedure
tDCS was delivered by a battery-driven constant direct-
current stimulator (Soterix 1 × 1 low-intensity stimulator).
Rubber electrodes were inserted into saline-soaked 5 × 7
cm2 sponges. Placement of the stimulation electrode
was made by reference to the 10–20 system: intersection
of T5–C3 and T3–P3 for Wernicke’s area, posterior region
of BA22 (Homan, Herman, & Purdy, 1987). The reference
electrode (cathodal or anodal depending on condition)
was attached to the right cheek. At the start, current was
increased over 30 s. to 1.75 mA, and the task than began.
Current lasted 20 minutes, the approximate task length.

Picture-word verification task
We administered the same picture-word verification task
as used in Experiment 3.

Analytic approach

As in Experiment 3, we excluded data from incorrect
trials and trials on which participants responded faster
than 150 ms or slower than 1500 ms (<3% of trials). All
analyses were conducted using mixed effects regression
models. Reaction time analyses were conducted using
linear mixed models and accuracy analyses were con-
ducted using logistic mixed models. Best fit models
and best random effects structure were determined in
the same manner as in Experiments 2–3. All models
included random effects of subject and picture category.

Factors were centered (e.g. ±0.5). All final models are
listed in the appendix and referenced by number in
the main manuscript (e.g. M1a).

Results and discussion

Our main prediction was that up-regulating activity over
Wernicke’s area – insofar as it enhances labelling –
should selectively enhance performance on categorising
items from sparse categories, and/or that down-regulat-
ing activity over Wernicke’s area – insofar as it impairs
the labelling process – should selectively impair perform-
ance on categorising items from sparse category trials.

Effects of tDCS on picture-word verification RTs
We first examined whether stimulation condition, cat-
egory sparsity, and delay between picture and label
had an effect on verification speed (see Figure 5(a)).
The full model included the three-way interaction
between stimulation condition, category sparsity, and
delay, and interactions between stimulation condition
and category sparsity, between stimulation condition
and delay, and between category sparsity and delay,
and main effects of stimulation condition, category spar-
sity, and delay (Appendix M5a). As can be seen in Figure
5(a), we found that participants in the cathodal-stimu-
lation condition had marginally slower RTs (M= 689
ms), than those in the anodal-stimulation condition (M
= 635 ms), b = 38 ms, CI95% = [−30, 107] χ2(1) = 2.71, p
= .10. We also found a significant interaction between
stimulation condition and category sparsity, b = 36 ms,
CI95% = [6, 65] χ2(1) = 5.67, p = .02 such that those in the
anodal-stimulation condition were faster to verify pic-
tures from sparse than dense categories, but those in
the cathodal-stimulation condition were not affected
by category sparsity. Finally, we found a significant
main effect of delay such that participants were faster
to respond with increasing delays, b =−100 ms, CI95%
= [−134, −66], χ2(1) = 65.47, p < .0001. There was no sig-
nificant three-way interaction, χ2(1) = .01, p = .91 no
interaction between stimulation condition and delay,
χ2(1) = .01, p = .94, no interaction between category spar-
sity and delay, χ2(1) = .98, p = .32; and no main effect of
category sparsity, χ2(1) = 1.65, p = .20.

Next, we conducted follow-up comparisons to
examine the significant two-way interaction between
stimulation condition and category sparsity. We first
looked at the effect of category sparsity for only those
in the anodal-stimulation condition (Appendix M5b).
There was a marginally significant effect of category
dimensionality, b = 38 ms, CI95% = [−30, 107], χ2(1) =
3.42, p = .06 such that these participants were faster to
verify the names of pictures from sparse than dense
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categories. On the other hand, we did not find an effect
of category sparsity for participants in the cathodal-
stimulation condition, χ2(1) = .39, p = .53 (Appendix M5c).

Next, we compared the effect of category sparsity for
participants in each stimulation group to the no-stimu-
lation participants from Experiment 3 treating the latter
as a baseline control. We first looked only at participants
in the anodal-stimulation and no-stimulation conditions
(Appendix M5d). There was a significant interaction
between stimulation condition and category sparsity, b
= 34 ms, CI95% = [−30, 107], χ2(1) = 8.11, p = .004 such
that those in the anodal-stimulation condition were
faster to verify pictures from sparse than dense cat-
egories, but those in the no-stimulation condition were
not affected by category sparsity. There were no main
effects of stimulation condition, χ2(1) = .16, p = .269 or
category sparsity, χ2(1) = 1.46, p = .23.

We next looked at participants in the cathodal-stimu-
lation and no-stimulation conditions (Appendix M5e). For
these participants, there was no interaction between
stimulation condition and category sparsity, χ2(1) = .02, p
= .88 and no significant effects of stimulation condition,
χ2(1) = 1.44, p = .23 or category sparsity, χ2(1) = .75, p
= .39. Thus, although up-regulating activity over Wer-
nicke’s area (via anodal tDCS) appears to have facilitated
the categorisation speed of objects belonging to sparse
categories, down-regulating activity (via cathodal tDCS)
didnot affect verification speedwhen contrastedwithper-
formance of no-stimulation controls from Experiment 3.

Effects of tDCS on picture-word verification
accuracy
We next examined whether stimulation condition, cat-
egory sparsity, and delay between picture and label

had an effect on verification accuracy (see Figure 5(b)).
The full model included the three-way interaction
between stimulation condition (anodal, cathodal), cat-
egory sparsity, and delay, interactions between stimu-
lation condition and category sparsity, between
stimulation condition and delay, and between category
sparsity and delay, main effects of stimulation condition,
category sparsity, and delay (Appendix M6a). We found a
significant two-way interaction between stimulation con-
dition and category sparsity, b =−2, CI95% = [−4, −1],
χ2(1) = 12.38, p = .0004 such that those in the cathodal-
stimulation condition were slightly less accurate at verify-
ing pictures from sparse than dense categories and those
in the anodal-stimulation condition were not affect by
category sparsity (see Figure 5(b)). There was no inter-
action between stimulation condition and delay, χ2(1)
= .96, p = .33 or between category sparsity and delay,
χ2(1) = 10, p = .75 and no main effects of stimulation,
χ2(1) = .00001, p = .99, category sparsity, χ2(1) = .69, p
= .41, or delay, χ2(1) = .89, p = .35. However, we did find
a marginal three-way interaction between stimulation
category sparsity and delay condition, b =−8, CI95% =
[−15, .03], χ2(1) = 3.67, p = .06.

Follow-up comparisons revealed that the three-way
interaction between stimulation, category sparsity and
delay was driven by performance on the longer delay
trials. A model of the interaction between stimulation
condition and category sparsity on only the longer
delay trials (Appendix M6b) revealed a significant inter-
action between stimulation condition and category spar-
sity, b =−3, CI95% = [−4, −1], χ2(1) = 12.82, p = .0003 such
that those in the cathodal-stimulation condition are less
accurate to verify pictures from sparse than dense cat-
egories, b =−2, CI95% = [−3, −1], χ2(1) = 8.64, p = .003

Figure 5. (a) Picture-word verification reaction time (ms) based on category sparsity and stimulation condition. (b) Picture-word ver-
ification accuracy based on category sparsity and stimulation condition. Note: Error bands depict standard error of predicted means.
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(Appendix M6c), but those in the anodal-stimulation con-
dition were not affected by category sparsity, χ2(1) =
1.07, p = .30 (Appendix M6d). There were no main
effects of stimulation condition, χ2(1) = .05, p = .83, or cat-
egory sparsity, χ2(1) = 1.03, p = .31.

Additional models of the effect of category sparsity
across delays for only those in each stimulation condition
revealed a significant effect of category sparsity for those
in the cathodal-stimulation condition (Appendix M6e), b
=−1, CI95% = [−2, −1], χ2(1) = 6.52, p = .01 such that par-
ticipants were less accurate at verifying the names of
sparse than dense categories, regardless of delay
length, but those in the anodal-stimulation condition
did not reveal an effect of category sparsity (Appendix
M6f), χ2(1) = 1.33, p = .25. Together these results –
although admittedly very small in magnitude – comp-
lement the pattern of RTs reported above by showing
stimulation differentially affects verification of sparse
vs. dense categories.

Finally, we compared the effect of category sparsity
on accuracy for participants in each stimulation con-
dition to the no-stimulation participants from Exper-
iment 3. We first compared those in the cathodal-
stimulation and no-stimulation conditions using a
model of the interaction between stimulation condition
and category sparsity and main effects of stimulation
condition and category sparsity (Appendix M6g). There
was a significant interaction between stimulation con-
dition and category sparsity, b = 2, CI95% = [1, 2], χ2(1) =
10.39, p = .001 such that participants were less accurate
at verifying pictures from sparse than dense categories.
There were no main effects of stimulation condition,
χ2(1) = .56, p = .46, or category sparsity, χ2(1) = .33, p
= .57. On the other hand, when we compared those in
the anodal-stimulation and no-stimulation conditions
using a model of the interaction between stimulation
condition and category sparsity and main effects of
stimulation condition and category sparsity (Appendix
M6h), did not find an interaction between stimulation
condition and category sparsity, χ2(1) = 1.36, p = .24,
nor main effects of stimulation condition, χ2(1) = .57, p
= .45, or category sparsity, χ2(1) = .17, p = .68. These
results suggest that cathodal, but not anodal stimulation
affected accuracy relative to baseline performance
(Experiment 3). Down-regulating activity over Wernicke’s
area (via cathodal tDCS) appears to have disrupted the
categorisation of objects belonging to sparse categories
(although by a very small degree).

Conclusions
The results of Experiment 4 suggest that anodal stimu-
lation selectively decreased participants’ picture-word
verification RTs (i.e. improved performance), specifically

for more sparse categories. Cathodal stimulation did
not selectively affect RTs as a function of category spar-
sity, but did lead to small decreases in accuracy for
more sparse categories. Insofar as our stimulation
regime affects a process related to labelling, these find-
ings, although small in size, provide some evidence
that labelling may selectively affect recognition and/or
naming of objects from sparse categories.

General discussion

Our main goal was to explore the processes required for
familiar object recognition, especially recognition of
sparse category members. We asked (1) whether selec-
tive representation demands are greater for recognising
members of sparser than denser categories and (2)
whether verbal labelling is involved in identifying
members of sparse categories.

In Experiment 1, we quantified the category sparsity
of 12 familiar categories that serve as stimuli in Exper-
iments 3 and 4. In Experiment 2, we validated our
measure of category sparsity, demonstrating that when
participants distinguish category members from non-
members, specific features (e.g. zebra stripes) are more
central to recognising members of sparse vs. dense
categories.

In Experiment 3, we found that participants demon-
strating more selective processing in the flanker task –
as measured by their smaller congruent-trial flanker
advantage – were faster to verify the names of pictures
belonging to sparse categories than the participants
exhibiting more integrative processing. Additionally, we
found that participants’ incongruent-trial cost in the
flanker task was marginally related to their verification
performance – though only in accuracy. We discuss
implications of these findings below.

In Experiment 4, we found that up-regulating neural
activity over Wernicke’s area led to an increase in the
speed with which participants verified the names of
sparse category members. Down-regulation led a slight
decrease in the accuracy with which participants verified
the names of sparse. Finally, down-regulating neural
activity over this same area led to slightly slower
overall verification RTs. Together, these findings offer
preliminary evidence that verbal labelling increases the
selectivity of representations, important for recognising
even highly familiar objects, especially those belonging
to sparser categories.

Earlier studies have demonstrated a link between
language and category structure: sparse categories
have previously been argued to have easily verbalisable
rules (see Ashby & Maddox, 2011) and interfering with
language appears to disrupt learning these categories.
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However, it has remained unclear why such a link might
exist. The present studies move beyond earlier work,
demonstrating that selective representation demands
are greater for recognising members of sparse compared
to dense categories and that verbal labelling may aid this
process of selective representation.

Feature names or category names

In Experiment 4, we sought to up- and down-regulate
the labelling process via tDCS over Wernicke’s area,
finding that up-regulation led to a systematic change
in picture-word verification speed, particularly for pic-
tures of objects from sparse categories. There are two
(not necessarily mutually exclusive) ways in which label-
ling may have affected recognition/naming of such
items: (1) labelling of the category-relevant feature (e.g.
STRIPES) and/or (2) labelling of the category itself (e.g.
ZEBRA). Evidence from developmental psychology
suggests that participants do not have to actively label
the feature itself for there to be an effect of labelling
on selective attention to the feature. For example, chil-
dren prioritise shape when recognising members of fam-
iliar categories (e.g. Yee, Jones, & Smith, 2012) and when
labelling novel categories (e.g. Perry & Samuelson, 2011;
Perry, Samuelson, Malloy, & Schiffer, 2010) even at an age
when they do not know any names for specific shapes,
such as “square” or “triangle” (Dale & Fenson, 1996).
Additionally, they do not prioritise shape in non-labelling
contexts, such as grouping novel nameless objects by
similarity (Landau, Smith, & Jones, 1988). Thus, although
children can prioritise an object’s shape without labelling
that shape, labelling the whole object as a member of a
category is what draws their attention to that critical
feature.

An account for how labelling may influence selective
representation is Lupyan’s label-feedback hypothesis
(Lupyan, 2007, 2012a). In learning a name for a sparse
category like ZEBRA, the category label becomes strongly
associated with a few visual features (those most critical
to category membership). The activation of the label
feeds back to lower-level visual representations and
helps to “clean up” the representation, down-weighting
irrelevant features and highlighting the relevant ones
(Lupyan, 2012a, 2012b). Nevertheless, it remains possible
that feature labels also play a role in the recognition
process.

Behavioural consequences of tDCS

Cathodal-stimulation led to a general increase in RTs –
regardless of category sparsity and to a small, but statisti-
cally significant decrease in verification accuracy for

sparse categories. Anodal-stimulation specifically led to
a decrease in verification RTs for sparse categories.
Although anodal- and cathodal-stimulation are often
described as having opposing effects via increases and
decreases of cortical excitability, respectively, this may
not always be the case (Batsikadze, Moliadze, Paulus,
Kuo, & Nitsche, 2013; Lupyan et al., 2012; Nozari,
Woodard, & Thompson-Schill, 2014), and opposing
effects of cortical excitability do not necessarily lead to
exactly opposite behavioural effects (e.g. Nitsche et al.,
2003).

The size of effects of tDCS on picture-word verification
performance as a function of category sparsity (Exper-
iment 4) was quite small, particularly on accuracy, but
this not detract from the importance of the present find-
ings. After all, tDCS in no way entirely disrupts verbal lab-
elling. These effects are nonetheless important in
demonstrating causality: we are creating slight pertur-
bations in a cognitive process to explore how that
process relates to some aspect of behaviour. The small
but systematic effects thus provide preliminary support
for the idea that labelling is an important process
involved in the selective representation needed for
sparse categorisation.

Within-category commonalities vs. between-
category differences

If one knows that something is a carrot, one can, with
high probability, expect it to be orange. Knowing that
something is orange, however, will only slightly increase
the probability that it is a carrot. Orange-ness is thus a
highly useful cue in helping to group carrots together,
but not very useful in distinguishing between carrots
and non-carrots if the non-carrots also happen to be
orange. Because the particular categories we used in
Experiments 3 and 4 did not share critical features and
were not semantically associated with the other cat-
egories we used, within-category feature commonalities
were also useful for making between-category
discriminations.

Nevertheless, more work is needed to understand
how category sparsity bears on distinguishing category
members from nonmembers when the set of categories
is not as limited, for example, when distinguishing
between related categories (e.g. cat and dog) or multiple
categories sharing a critical feature (e.g. carrot and
pumpkin). An important consideration for future work
is that distinguishing category members from non-
members is highly context dependent – the information
needed to decide that a pumpkin is not a carrot (shape)
is different from the information needed to decide an
orange habanero pepper is not a carrot (texture, taste),
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and different still from the information needed to decide
a goldfish is not a carrot (shape, texture, animacy). Such
context-dependency will likely mean that the sparsity of
a category may be quite flexible, depending on the con-
textually relevant set of contrasting categories.

Conclusion

When recognising an object as a member of a category,
people must selectively represent category-relevant
information. This process is more central when recognis-
ing members of sparse categories such as a zebra, and
less important for recognising members of dense cat-
egories such as dog. Modulating processes involved in
labelling via tDCS led to small, but systematic changes
in the speed and accuracy with which people could
recognise and/or name members of sparse categories.
We provide preliminary evidence that the process of
verbal labelling supports selective representation even
in the context of recognising and naming members of
highly familiar categories.

Notes

1. This characterisation of categorisation leaves unspecified
whether it is the perceptual inputs that are thus trans-
formed, or whether the transformation happens as part
of post-perceptual processing.

2. Although certain features like spatial and acoustic fre-
quency, orientation, size, motion direction, and a
number of geometric properties like concavity may be
basic in the sense of being ready-made objects of atten-
tional selection (Wolfe & Horowitz, 2004), attempts to
derive a vocabulary of basic features in perception, and
much less in higher-level cognition and language
(Evans & Levinson, 2009) has not been successful. It
seems to us more likely that features are emergent
higher-level units derived from learning environmental
co-occurrences (Hommel, Müsseler, Aschersleben, &
Prinz, 2001; Schyns, Goldstone, & Thibaut, 1998) and
thus will vary depending on the experiences of an organ-
ism as well as current task demands. A familiar example
of such emergent units are the “chunks” first described
by Miller (1956).

3. We include in the definition of dense categories ad-hoc
categories such as THINGS COMMONLY FOUND IN A KITCHEN

(Lupyan et al., 2012)
4. There are many components to the labelling/naming

process, and we cannot claim that our direct current
stimulation procedure is manipulating a specific
process. For simplicity we will use the general term “lab-
elling” throughout this paper, with the understanding
that that labelling is a complex and multifaceted process.

5. It was somewhat unexpected to not find a main effect of
semantic association strength, or especially an effect of
semantic association strength just on semantic foil
trials, χ2(1) = .67, p = .41. However, we had selected the
particular categories we did to be evenly spread across

the sparsity continuum rather than to be evenly
distributed in semantic association strength, and this
could have been an artefact of the particular categories
chosen.

Acknowledgments

We thank Jesse Sherman, Ishaan Guptasarma, Oliver Roe, and
Callie Porter-Borden for their help in data collection. We
would also like to thank Bob McMurray and two anonymous
reviewers for their thoughtful feedback on an earlier version
of this manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The study was partially supported by NSF#1331293 to G. L.

References

Ashby, F. G., & Maddox, W. T. (2011). Human category learning
2.0. Annals of the New York Academy of Sciences, 1224(1), 147–
161. doi:10.1111/j.1749-6632.2010.05874.x

Balaban, M. T., & Waxman, S. R. (1997). Do words facilitate object
categorization in 9-month-old infants? Journal of
Experimental Child Psychology, 64(1), 3–26.

Banich, M. T. (2009). Executive function the search for an inte-
grated account. Current Directions in Psychological Science,
18(2), 89–94. doi:10.1111/j.1467-8721.2009.01615.x

Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M.
A. (2013). Partially non-linear stimulation intensity-depen-
dent effects of direct current stimulation on motor cortex
excitability in humans. The Journal of Physiology, 591(Pt 7),
1987–2000. doi:10.1113/jphysiol.2012.249730

Botella, J., Barriopedro, M. I., & Joula, J. F. (2002). Temporal inter-
actions between target and distractor processing: Positive
and negative priming effects. Psicológica, 23(2), 371–400.

Boutonnet, B., & Lupyan, G. (2015). Words jump-start vision: A
label advantage in object recognition. The Journal of
Neuroscience, 35(25), 9329–9335. doi:10.1523/JNEUROSCI.
5111-14.2015

Cagigas, X. E., Filoteo, J. V., Stricker, J. L., Rilling, L. M., & Friedrich,
F. J. (2007). Flanker compatibility effects in patients with
Parkinson’s disease: Impact of target onset delay and trial-
by-trial stimulus variation. Brain and Cognition, 63(3), 247–
259. doi:10.1016/j.bandc.2006.09.002

Couchman, J. J., Coutinho, M. V. C., & Smith, J. D. (2010). Rules
and resemblance: Their changing balance in the category
learning of humans (Homo sapiens) and Monkeys (Macaca
mulatta). Journal of Experimental Psychology. Animal
Behavior Processes, 36(2), 172–183. doi:10.1037/a0016748

Dale, P. S., & Fenson, L. (1996). Lexical development norms for
young children. Behavior Research Methods, Instruments, &
Computers, 28(1), 125–127. doi:10.3758/BF03203646

Eriksen, C. W. (1995). The flankers task and response compe-
tition: A useful tool for investigating a variety of cognitive

LANGUAGE, COGNITION AND NEUROSCIENCE 15

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ia
m

i]
, [

L
yn

n 
Pe

rr
y]

 a
t 0

7:
21

 2
5 

A
pr

il 
20

16
 

http://dx.doi.org/10.1111/j.1749-6632.2010.05874.x
http://dx.doi.org/10.1111/j.1467-8721.2009.01615.x
http://dx.doi.org/10.1113/jphysiol.2012.249730
http://dx.doi.org/10.1523/JNEUROSCI.5111-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.5111-14.2015
http://dx.doi.org/10.1016/j.bandc.2006.09.002
http://dx.doi.org/10.1037/a0016748
http://dx.doi.org/10.3758/BF03203646


problems. Visual Cognition, 2(2–3), 101–118. doi:10.1080/
13506289508401726

Evans, N., & Levinson, S. C. (2009). The myth of language univer-
sals: Language diversity and its importance for cognitive
science. Behavioral and Brain Sciences, 32(05), 429–448.
doi:10.1017/S0140525X0999094X

Gainotti, G. (2014). Old and recent approaches to the problem
of non-verbal conceptual disorders in aphasic patients.
Cortex, 53, 78–89. doi:10.1016/j.cortex.2014.01.009

Homan, R. W., Herman, J., & Purdy, P. (1987). Cerebral location of
international 10–20 system electrode placement.
Electroencephalography and Clinical Neurophysiology, 66(4),
376–382. doi:10.1016/0013-4694(87)90206-9

Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001).
The Theory of Event Coding (TEC): A framework for percep-
tion and action planning. The Behavioral and Brain Sciences,
24(5), 849–878; discussion 878–937.

Iyer, M. B., Mattu, U., Grafman, J., Lomarev, M., Sato, S., &
Wassermann, E. M. (2005). Safety and cognitive effect of
frontal DC brain polarization in healthy individuals.
Neurology, 64(5), 872–875. doi:10.1212/01.WNL.0000152986.
07469.E9

Jaeger, T. F. (2009). Random effect: Should I stay or should I go?
Retrieved February 8, 2013, from http://hlplab.wordpress.
com/2009/05/14/random-effect-structure/

Kan, I. P., & Thompson-Schill, S. L. (2004). Selection from percep-
tual and conceptual representations. Cognitive, Affective, &
Behavioral Neuroscience, 4(4), 466–482. doi:10.3758/CABN.4.
4.466

Kloos, H., & Sloutsky, V. M. (2008). What’s behind different kinds
of kinds: Effects of statistical density on learning and rep-
resentation of categories. Journal of Experimental
Psychology: General, 137(1), 52–72. doi:10.1037/0096-3445.
137.1.52

Landau, B., Smith, L. B., & Jones, S. S. (1988). The importance of
shape in early lexical learning. Cognitive Development, 3(3),
299–321. doi:10.1016/0885-2014(88)90014-7

Lupyan, G. (2007). The label feedback hypothesis: Linguistic influ-
ences on visual processing. PhD. Thesis. Pittsburgh, PA:
Carnegie Mellon University.

Lupyan, G. (2009). Extracommunicative functions of language:
Verbal interference causes selective categorization impair-
ments. Psychonomic Bulletin & Review, 16(4), 711–718.
doi:10.3758/PBR.16.4.711

Lupyan, G. (2012a). Linguistically modulated perception and
cognition: The label-feedback hypothesis. Frontiers in
Cognition, 3, 54. doi:10.3389/fpsyg.2012.00054

Lupyan, G. (2012b). What do words do? Toward a theory of
language-augmented thought. Psychology of Learning and
Motivation–Advances in Research and Theory, 57, 255.

Lupyan, G., & Mirman, D. (2013). Linking language and categor-
ization: Evidence from aphasia. Cortex, 49(5), 1187–1194.
doi:10.1016/j.cortex.2012.06.006

Lupyan, G., Mirman, D., Hamilton, R., & Thompson-Schill, S. L.
(2012). Categorization is modulated by transcranial direct
current stimulation over left prefrontal cortex. Cognition,
124(1), 36–49. doi:10.1016/j.cognition.2012.04.002

Lupyan, G., Rakison, D. H., & McClelland, J. L. (2007). Language is
not just for talking redundant labels facilitate learning of
novel categories. Psychological Science, 18(12), 1077–1083.
doi:10.1111/j.1467-9280.2007.02028.x

Lupyan, G., & Thompson-Schill, S. L. (2012). The evocative power
of words: Activation of concepts by verbal and nonverbal
means. Journal of Experimental Psychology: General, 141(1),
170–186. doi:10.1037/a0024904

Maddox, W. T., Glass, B. D., O’Brien, J. B., Filoteo, J. V., & Ashby, F.
G. (2010). Category label and response location shifts in cat-
egory learning. Psychological Research, 74(2), 219–236.
doi:10.1007/s00426-009-0245-z

Miller, G. A. (1956). The magical number seven, plus or minus
two: Some limits on our capacity for processing information.
Psychological Review, 63(2), 81–97. doi:10.1037/h0043158

Minda, J. P., Desroches, A. S., & Church, B. A. (2008a). Learning
rule-described and non-rule-described categories: A com-
parison of children and adults. Journal of Experimental
Psychology. Learning, Memory, and Cognition, 34(6), 1518–
1533. doi:10.1037/a0013355

Minda, J. P., Desroches, A. S., & Church, B. A. (2008b). Learning
rule-described and non-rule-described categories: A com-
parison of children and adults. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 34(6), 1518–
1533. doi:10.1037/a0013355

Minda, J. P., & Miles, S. J. (2010). The influence of verbal and
nonverbal processing on category learning. In Brian H. Ross
(Ed.), Psychology of learning and motivation (Vol. 52, pp.
117–162). Academic Press. Retrieved from http://www.
sciencedirect.com/science/article/pii/S0079742110520036

Morey, R. D. (2008). Confidence intervals from normalized data:
A correction to Cousineau (2005). Tutorials in Quantitative
Methods for Psychology, 4(2), 61–64.

Nazzi, T., & Gopnik, A. (2001). Linguistic and cognitive abilities in
infancy: When does language become a tool for categoriz-
ation? Cognition, 80(3), B11–B20.

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University
of South Florida free association, rhyme, and word fragment
norms. Behavior Research Methods, Instruments, & Computers,
36(3), 402–407. doi:10.3758/BF03195588

Nitsche, M. A., Liebetanz, D., Lang, N., Antal, A., Tergau, F., &
Paulus, W. (2003). Safety criteria for transcranial direct
current stimulation (tDCS) in humans. Clinical
Neurophysiology, 114(11), 2220–2222. doi:10.1016/S1388-
2457(03)00235-9

Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced
in the human motor cortex by weak transcranial direct
current stimulation. The Journal of Physiology, 527(Pt 3),
633–639.

Nozari, N., Woodard, K., & Thompson-Schill, S. L. (2014).
Consequences of cathodal stimulation for behavior: When
does it help and when does it hurt performance? PLoS
ONE, 9(1), e84338. doi:10.1371/journal.pone.0084338

Perry, L. K., & Lupyan, G. (2013). What the online manipulation
of linguistic activity can tell us about language and
thought. Frontiers in Behavioral Neuroscience, 7, 122. doi:10.
3389/fnbeh.2013.00122

Perry, L. K., & Lupyan, G. (2014). The role of language in multi-
dimensional categorization: Evidence from transcranial
direct current stimulation and exposure to verbal labels.
Brain and Language, 135, 66–72. doi:10.1016/j.bandl.2014.
05.005

Perry, L. K., & Samuelson, L. K. (2011). The shape of the vocabu-
lary predicts the shape of the bias. Frontiers in Psychology, 2.
doi:10.3389/fpsyg.2011.00345

16 L. K. PERRY AND G. LUPYAN

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ia
m

i]
, [

L
yn

n 
Pe

rr
y]

 a
t 0

7:
21

 2
5 

A
pr

il 
20

16
 

http://dx.doi.org/10.1080/13506289508401726
http://dx.doi.org/10.1080/13506289508401726
http://dx.doi.org/10.1017/S0140525X0999094X
http://dx.doi.org/10.1016/j.cortex.2014.01.009
http://dx.doi.org/10.1016/0013-4694(87)90206-9
http://dx.doi.org/10.1212/01.WNL.0000152986.07469.E9
http://dx.doi.org/10.1212/01.WNL.0000152986.07469.E9
http://hlplab.wordpress.com/2009/05/14/random-effect-structure/
http://hlplab.wordpress.com/2009/05/14/random-effect-structure/
http://dx.doi.org/10.3758/CABN.4.4.466
http://dx.doi.org/10.3758/CABN.4.4.466
http://dx.doi.org/10.1037/0096-3445.137.1.52
http://dx.doi.org/10.1037/0096-3445.137.1.52
http://dx.doi.org/10.1016/0885-2014(88)90014-7
http://dx.doi.org/10.3758/PBR.16.4.711
http://dx.doi.org/10.3389/fpsyg.2012.00054
http://dx.doi.org/10.1016/j.cortex.2012.06.006
http://dx.doi.org/10.1016/j.cognition.2012.04.002
http://dx.doi.org/10.1111/j.1467-9280.2007.02028.x
http://dx.doi.org/10.1037/a0024904
http://dx.doi.org/10.1007/s00426-009-0245-z
http://dx.doi.org/10.1037/h0043158
http://dx.doi.org/10.1037/a0013355
http://dx.doi.org/10.1037/a0013355
http://www.sciencedirect.com/science/article/pii/S0079742110520036
http://www.sciencedirect.com/science/article/pii/S0079742110520036
http://dx.doi.org/10.3758/BF03195588
http://dx.doi.org/10.1016/S1388-2457(03)00235-9
http://dx.doi.org/10.1016/S1388-2457(03)00235-9
http://dx.doi.org/10.1371/journal.pone.0084338
http://dx.doi.org/10.3389/fnbeh.2013.00122
http://dx.doi.org/10.3389/fnbeh.2013.00122
http://dx.doi.org/10.1016/j.bandl.2014.05.005
http://dx.doi.org/10.1016/j.bandl.2014.05.005
http://dx.doi.org/10.3389/fpsyg.2011.00345


Perry, L. K., & Samuelson, L. K. (2013). The role of verbal labels in
attention to dimensional similarity. In M. Knauff, M. Pauen, N.
Sebanz, & I. Wachsmuch (Eds.), Proceedings of the thirty-fifth
annual conference of the cognitive science society. (pp.
3217–3222). Austin, TX: Cognitive Science Society.

Perry, L. K., Samuelson, L. K., Malloy, L. M., & Schiffer, R. N. (2010).
Learn locally, think globally: Exemplar variability supports
higher-order generalization and word learning. Psychological
Science, 21(12), 1894–1902. doi:10.1177/0956797610389189

Plunkett, K., Hu, J. F., & Cohen, L. B. (2008). Labels can override
perceptual categories in early infancy. Cognition, 106(2), 665–
81. doi:S0010–0277(07)00108-4

Pothos, E. M. (2005). The rules versus similarity distinction.
Behavioral and Brain Sciences, 28(01), 1–14. doi:10.1017/
S0140525X05000014

Price, C. J. (2000). The anatomy of language: Contributions from
functional neuroimaging. Journal of Anatomy, 197(Pt 3), 335–
359. doi:10.1046/j.1469-7580.2000.19730335.x

Reppen, R., Ide, N., & Suderman, K. (2005). American National
Corpus (ANC) second release [DVD]. Philadelphia.

Roberts, R. E., Anderson, E. J., & Husain, M. (2010). Expert cogni-
tive control and individual differences associated with frontal
and parietal white matter microstructure. The Journal of
Neuroscience, 30(50), 17063–17067. doi:10.1523/JNEUROSCI.
4879-10.2010

Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in
the internal structure of categories. Cognitive Psychology, 7
(4), 573–605. doi:10.1016/0010-0285(75)90024-9

Rosch, E., Simpson, C., & Scott, R. (1976). Structural bases of typi-
cality effects. Journal of Experimental Psychology: Human
Perception and Performance, 2(4), 491–502. doi:10.1037/
0096-1523.2.4.491

Schyns, P. G., Goldstone, R. L., & Thibaut, J. P. (1998). The devel-
opment of features in object concepts. Behavioral and Brain
Sciences, 21(01), 1–17.

Sloutsky, V. M. (2010). From perceptual categories to concepts:
What develops? Cognitive Science, 34(7), 1244–1286. doi:10.
1111/j.1551-6709.2010.01129.x

Smith, L. B., & Kemler, D. G. (1977). Developmental trends in free
classification: Evidence for a new conceptualization of percep-
tual development. Journal of Experimental Child Psychology, 24
(2), 279–298. doi:10.1016/0022-0965(77)90007-8

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005).
Neural measures reveal individual differences in controlling
access to working memory. Nature, 438(7067), 500–503.
doi:10.1038/nature04171

Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., &
Pascual-Leone, A. (2007). Transcranial direct current stimu-
lation: A computer-based human model study. NeuroImage,
35(3), 1113–1124. doi:10.1016/j.neuroimage.2007.01.027

Wilson, M. D. (1988). The MRC psycholinguistic database:
Machine readable dictionary, version 2. Behavior Research
Methods, Instruments, & Computers, 20(1), 6–11. doi:10.
3758/BF03202594

Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the
deployment of visual attention and how do they do it?
Nature Reviews Neuroscience, 5(6), 495–501. doi:10.1038/
nrn1411

Yee, M., Jones, S. S., & Smith, L. B. (2012). Changes in visual
object recognition precede the shape bias in early noun
learning. Frontiers in Psychology, 3. doi:10.3389/fpsyg.2012.
00533

Appendix

Experiment 2

sparsity = proportion of people listing the same common
feature for the target category (coded low to high as
dense to sparse)

distractorType = whether or not the picture was a feature
foil, semantic foil, or matched the target word. Coded as
±0.5. (Match trials were excluded from this analysis).

semanticStrength = strength of association between
target and semantic foil

strength = median split of semanticStrength

pv$strength<-factor(pv$semanticStrength>=median(pv
$semanticStrength),

levels=c(“FALSE”,“TRUE”),

labels=c(“Low Semantic Strength”,“High

Semantic Strength”))

M1a<-lmer (latency ∼ sparsity * distractorType * seman-
ticStrength + (1|subjCode) + (1|picCategory), data=sub-
set(pv, distractorType!=“match”))

M1b<-lmer (latency ∼ sparsity * distractorType + (1|sub-
jCode) + (1|picCategory), data=subset(pv, distractorType!
=“match” & strength== “Low Semantic Strength”))

M1c<-lmer (latency ∼ sparsity + (1|subjCode) + (1|picCa-
tegory), data=subset(pv, distractorType=“feature” &
strength== “Low Semantic Strength”))

M1d<-lmer (latency ∼ sparsity + (1|subjCode) + (1|picCa-
tegory), data=subset(pv, distractorType=“semantic” &
strength== “Low Semantic Strength”))
M1e<-lmer (latency ∼ sparsity * distractorType + (1|sub-
jCode) + (1|picCategory), data=subset(pv, distractorType!
=“match” & strength== “High Semantic Strength”))

Experiment 3

Picture-word verification

sparsity = proportion of people listing the same common
feature for the target category (coded low to high as
dense to sparse)
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delay = length of time between presentation of picture
and word (200, 300, or 600ms)

pictureCategory = category to which each picture belongs

M2a<-lmer (latency ∼ sparsity * delay + (1|subjCode) +
(1|pictureCategory), data=p)

M2b<-glmer (isRight ∼ sparsity * delay + (1|subjCode) +
(1|pictureCategory), data=p, family=“binomial”)

Flanker task

trialType = how the flanker stimuli corresponded to the
target stimulus (contrast coded: incongruent: −.5,
neutral: 0, congruent: .5)

delay = length of time between onset of flankers and
onset of target stimulus (0, 150, 500ms)

M3a <-lmer (latency ∼ trialType * delay + (1|subjCode),
data=f)

M3b <-lmer (latency ∼ trialType *delay + (1|subjCode),
data = subset (f, trialType != “congruent”)

M3c <-lmer (latency ∼ trialType *delay + (1|subjCode),
data = subset (f, trialType != “incongruent”)

M3d <-glmer (isRight ∼ trialType * delay + (1|subjCode),
data=f, family= “binomial”)

Between-task comparison

congruentAd = size of congruent advantage in RT on
sequential trials
congruentAdACC= size of congruent advantage in accu-
racy on sequential trials

incongruentCost = size of incongruent cost in RT on
sequential trials

incongruentCostACC = size of incongruent cost in accu-
racy on sequential trials

M4a<-lmer (latency ∼ congruentAd * sparsity + con-
gruentAdACC * sparsity + (1|subjCode) + (1|pictureCate-
gory), data=p)

M4b<-glmer (isRight ∼ incongruentCost * sparsity +
incongruentCostACC * sparsity + (1|subjCode) + (1|pic-
tureCategory), data=p, family=binomial)

Experiment 4

electrode = stimulation condition (anodal: .5, cathodal:
−.5)

M5a<-lmer (latency ∼ electrode * sparsity * delay+ (1|
subjCode) + (1|pictureCategory), data=t)

M5b<-lmer (latency ∼ sparsity + (1|subjCode) + (1|pic-
tureCategory), data= subset(t, electrode== “anodal”))

M5c<-lmer (latency ∼ sparsity + (1|subjCode) + (1|pic-
tureCategory), data=subset(t, electrode== “cathodal”))

M5d<-lmer (latency ∼ electrode * sparsity + (1|subjCode)
+ (1|pictureCategory), data=subset(all, electrode!=
“cathodal”))

M5e<-lmer (latency ∼ electrode * sparsity + (1|subjCode)
+ (1|pictureCategory), data=subset(all, electrode!=
“anodal”))

M6a<-glmer (isRight ∼ electrode * sparsity * delay + (1|
subjCode)+(1|pictureCategory), data=t, family=
“binomial”)

t$Mdelay<-factor(t$delay>=median(t$delay),

levels=c(“FALSE”,“TRUE”),

labels=c(“Short Delay”,“Long Delay”))

l<-subset(t, Mdelay==“Long Delay”)
M6b<- glmer (isRight ∼ electrode * catDim + (1|sub-
jCode) + (1|pictureCategory), data=l,
family=“binomial”)

M6c<- glmer (isRight ∼ electrode * catDim + (1|sub-
jCode) + (1|pictureCategory), data=subset(l, electrode==
“cathodal”), family=“binomial”)

M6d<- glmer (isRight ∼ electrode * catDim + (1|sub-
jCode) + (1|pictureCategory), data=subset(l, electrode==
“anodal”), family=“binomial”)
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M6e<-glmer (isRight ∼ sparsity * delay + (1|subjCode)
+(1|pictureCategory), data=subset(t, electrode== “catho-
dal”), family= “binomial”)

M6f<-glmer (isRight ∼ sparsity * delay + (1|subjCode)+(1|
pictureCategory), data=subset(t, electrode== “anodal”),
family= “binomial”)

M6g<-glmer (isRight ∼ electrode * sparsity + (1|sub-
jCode)+(1|pictureCategory), data=subset(all, electrode!=
“anodal”), family= “binomial”)

M6h<-glmer (isRight ∼ electrode * sparsity + (1|sub-
jCode)+(1|pictureCategory), data=subset(all, electrode!=
“cathodal”), family= “binomial”)
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