

Covers Python 3 and Python 2

Opening a file using an absolute path

f_path = "/home/ehmatthes/books/alice.txt"

with open(f_path) as f_obj:
 lines = f_obj.readlines()

Opening a file on Windows
Windows will sometimes interpret forward slashes incorrectly. If
you run into this, use backslashes in your file paths.

f_path = "C:\Users\ehmatthes\books\alice.txt"

with open(f_path) as f_obj:
 lines = f_obj.readlines()

Your programs can read information in from files, and
they can write data to files. Reading from files allows
you to work with a wide variety of information; writing
to files allows users to pick up where they left off the
next time they run your program. You can write text to
files, and you can store Python structures such as
lists in data files.

Exceptions are special objects that help your
programs respond to errors in appropriate ways. For
example if your program tries to open a file that
doesn’t exist, you can use exceptions to display an
informative error message instead of having the
program crash.

To read from a file your program needs to open the file and
then read the contents of the file. You can read the entire
contents of the file at once, or read the file line by line. The
with statement makes sure the file is closed properly when
the program has finished accessing the file.

Reading an entire file at once

filename = 'siddhartha.txt'

with open(filename) as f_obj:
 contents = f_obj.read()

print(contents)

Reading line by line
Each line that's read from the file has a newline character at the
end of the line, and the print function adds its own newline
character. The rstrip() method gets rid of the the extra blank lines
this would result in when printing to the terminal.

filename = 'siddhartha.txt'

with open(filename) as f_obj:
 for line in f_obj:
 print(line.rstrip())

Storing the lines in a list

filename = 'siddhartha.txt'

with open(filename) as f_obj:
 lines = f_obj.readlines()

for line in lines:
 print(line.rstrip())

Passing the 'w' argument to open() tells Python you want to
write to the file. Be careful; this will erase the contents of
the file if it already exists. Passing the 'a' argument tells
Python you want to append to the end of an existing file.

Writing to an empty file

filename = 'programming.txt'

with open(filename, 'w') as f:
 f.write("I love programming!")

Writing multiple lines to an empty file

filename = 'programming.txt'

with open(filename, 'w') as f:
 f.write("I love programming!\n")
 f.write("I love creating new games.\n")

Appending to a file

filename = 'programming.txt'

with open(filename, 'a') as f:
 f.write("I also love working with data.\n")
 f.write("I love making apps as well.\n")

When Python runs the open() function, it looks for the file in
the same directory where the program that's being excuted
is stored. You can open a file from a subfolder using a
relative path. You can also use an absolute path to open
any file on your system.

Opening a file from a subfolder

f_path = "text_files/alice.txt"

with open(f_path) as f_obj:
 lines = f_obj.readlines()

for line in lines:
 print(line.rstrip())

When you think an error may occur, you can write a try-
except block to handle the exception that might be raised.
The try block tells Python to try running some code, and the
except block tells Python what to do if the code results in a
particular kind of error.

Handling the ZeroDivisionError exception

try:
 print(5/0)
except ZeroDivisionError:
 print("You can't divide by zero!")

Handling the FileNotFoundError exception

f_name = 'siddhartha.txt'

try:
 with open(f_name) as f_obj:
 lines = f_obj.readlines()
except FileNotFoundError:
 msg = "Can't find file {0}.".format(f_name)
 print(msg)

It can be hard to know what kind of exception to handle
when writing code. Try writing your code without a try block,
and make it generate an error. The traceback will tell you
what kind of exception your program needs to handle.

http://nostarchpress.com/pythoncrashcourse
http://nostarchpress.com/pythoncrashcourse

The try block should only contain code that may cause an
error. Any code that depends on the try block running
successfully should be placed in the else block.

Using an else block

print("Enter two numbers. I'll divide them.")

x = input("First number: ")
y = input("Second number: ")

try:
 result = int(x) / int(y)
except ZeroDivisionError:
 print("You can't divide by zero!")
else:
 print(result)

Preventing crashes from user input
Without the except block in the following example, the program
would crash if the user tries to divide by zero. As written, it will
handle the error gracefully and keep running.

"""A simple calculator for division only."""

print("Enter two numbers. I'll divide them.")
print("Enter 'q' to quit.")

while True:
 x = input("\nFirst number: ")
 if x == 'q':
 break
 y = input("Second number: ")
 if y == 'q':
 break

 try:
 result = int(x) / int(y)
 except ZeroDivisionError:
 print("You can't divide by zero!")
 else:
 print(result)

Sometimes you want your program to just continue running
when it encounters an error, without reporting the error to
the user. Using the pass statement in an else block allows
you to do this.

Using the pass statement in an else block

f_names = ['alice.txt', 'siddhartha.txt',
 'moby_dick.txt', 'little_women.txt']

for f_name in f_names:
 # Report the length of each file found.
 try:
 with open(f_name) as f_obj:
 lines = f_obj.readlines()
 except FileNotFoundError:
 # Just move on to the next file.
 pass
 else:
 num_lines = len(lines)
 msg = "{0} has {1} lines.".format(
 f_name, num_lines)
 print(msg)

More cheat sheets available at

The json module allows you to dump simple Python data
structures into a file, and load the data from that file the
next time the program runs. The JSON data format is not
specific to Python, so you can share this kind of data with
people who work in other languages as well.

Knowing how to manage exceptions is important when
working with stored data. You'll usually want to make sure
the data you're trying to load exists before working with it.

Using json.dump() to store data

"""Store some numbers."""

import json

numbers = [2, 3, 5, 7, 11, 13]

filename = 'numbers.json'
with open(filename, 'w') as f_obj:
 json.dump(numbers, f_obj)

Using json.load() to read data

"""Load some previously stored numbers."""

import json

filename = 'numbers.json'
with open(filename) as f_obj:
 numbers = json.load(f_obj)

print(numbers)

Making sure the stored data exists

import json

f_name = 'numbers.json'

try:
 with open(f_name) as f_obj:
 numbers = json.load(f_obj)
except FileNotFoundError:
 msg = "Can’t find {0}.".format(f_name)
 print(msg)
else:
 print(numbers)

Exception-handling code should catch specific exceptions
that you expect to happen during your program's execution.
A bare except block will catch all exceptions, including
keyboard interrupts and system exits you might need when
forcing a program to close.

If you want to use a try block and you're not sure which
exception to catch, use Exception. It will catch most
exceptions, but still allow you to interrupt programs
intentionally.

Don’t use bare except blocks

try:
 # Do something
except:
 pass

Use Exception instead

try:
 # Do something
except Exception:
 pass

Printing the exception

try:
 # Do something
except Exception as e:
 print(e, type(e))

Well-written, properly tested code is not very prone to
internal errors such as syntax or logical errors. But every
time your program depends on something external such as
user input or the existence of a file, there's a possibility of
an exception being raised.

It's up to you how to communicate errors to your users.
Sometimes users need to know if a file is missing;
sometimes it's better to handle the error silently. A little
experience will help you know how much to report.

Practice with exceptions
Take a program you've already written that prompts for user
input, and add some error-handling code to the program.

http://ehmatthes.github.io/pcc/cheatsheets/README.html

